[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Tool-based Micro Machining and Applications in MEMS

  • Chapter
MEMS/NEMS

Abstract

Advances in product miniaturization leads to size and weight reduction which can substantially increase the convenience and value of many products [1, 2]. Micro-Electro- Mechanical Systems (MEMS) are typical examples of micro products. It is an integration of mechanical elements, sensors, actuators, and electronics on a common substrate through micro fabrication technology. The choice of substrate materials for MEMS is very wide. Amongst these materials, single crystalline silicon is by far the most common. Complementing silicon is a host of materials that include polysilicon, amorphous silicon, silicon oxides and nitrides, glass, organic polymers, and metals. While the electronics are fabricated using integrated circuit (IC) process sequences (e.g., CMOS, Bipolar, or BICMOS processes), the micro mechanical components are fabricated using compatible micro machining processes that selectively etch away parts of the silicon wafer or add new structural layers to form the mechanical and electro-mechanical devices. Over the years, tool-based micro machining methods have been applied to a variety of substrates to fabricate micro structures and transducers in addition to etching and LIGA (from the German: Lithographie Galvanformung und Abformung), which is a process based on lithography, electroplating and molding. The workpiece may be a final part, a mold for electroplating to create a microstructure, or an x-ray lithography mask, for example [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 359.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 449.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 449.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Corbett, J., McKeown, P.A., Peggs, G.N., and Whatmore, R., Nanotechnology: International Development and Emerging Products, Annals of the CIRP, 2000;49(2):523–545.

    Google Scholar 

  2. Masuzawa, T., State of the Art of Micromachining, Annals of the CIRP, 2000;49(2):473–488.

    Google Scholar 

  3. Maluf, N., An Introduction to Microelectromechanical Systems Engineering, Artech House, Inc., 2000.

    Google Scholar 

  4. Fang, F.Z., Development of Micro Machining Technology, Presentation to SIMTech, Singapore, August 2002.

    Google Scholar 

  5. Shimada, S., Ikawa, N., Tanaka, H., Ohmori, G., and Uchikoshi, J., Feasibility Study on Ultimate Accuracy in Micro Cutting Using Molecular Dynamics Simulation, Annals of the CIRP, 1993;42(1):91–94.

    Google Scholar 

  6. Tansel, I., Rodriguez, O., Trujillo, M., Paz, E., and Li, W., Micro-end-milling—I. Wear and Breakage, International Journal of Machine Tools & Manuafacture, 1998;38:1419–1436.

    Article  Google Scholar 

  7. Friedrich, C.R., Coane, P.J., and Vasile, M.J., Micromilling Development and Applications for Microfabrication, Journal of Microelectronic Engineering, 1997;35:367–372.

    Article  CAS  Google Scholar 

  8. Bao, W.Y. and Tansel, I.N., Modeling Micro-end-milling Operations. Part II: Tool Run-out, International Journal of Machine Tools and Manufacture, 2000;40:2175–2192.

    Article  Google Scholar 

  9. Fang, F.Z., Cutting Edge Effect in Micromachining, Presentation to the Cutting Committee Meeting (Part II) in 52nd CIRP General Assembly, Spain, 2002.

    Google Scholar 

  10. Fang, F.Z., Wu, H., Liu, X.D., Liu, Y.C., and Ng, S.T., Tool Geometry Study in Micromachining, Journal of Micromechanics and Microengineering, 2003;13:726–731.

    Article  Google Scholar 

  11. Schaller, T., Bohn, L., Mayer, J., and Schubert, K., Microstructure Grooves with a Width of less than 50µm Cut with Ground Hard Metal Micro End Mills, Precision Engineering, 1999;23:229–235.

    Article  Google Scholar 

  12. Juvinall, R.C., Stress, Strain, and Strength, New York: McGraw-Hill, 1967, pp. 65–91.

    Google Scholar 

  13. Picard, Y.N., Adams, D.P., Vasile, M.J., and Ritchey, M.B., Focused Ion Beamed-shaped Microtools for Ultra-precision Machining of Cylindrical Components, Precision Engineering, 2003;27:59–69.

    Article  Google Scholar 

  14. Adams, D.P., Vasile, M.J., Benavides, G., and Campbell, A.N., Micromilling of Metal Alloys with Focused Ion Beam-fabricated Tools, Precision Engineering, 2001;25:107–113.

    Article  Google Scholar 

  15. Friedrich, C.R., Coane, P.J., and Vasile, M.J., Micromilling Development and Applications for Microfabrication, Microelectronic Engineering, 1997;35:367–372.

    Article  CAS  Google Scholar 

  16. Friedrich, C.R., Warrington, R., Bacher, W. et al., High Aspect Ration Processing, in P. Pai-Choudhury (Ed.), Handbook of Microlithography, Micrmachining and Microfabrication, SPIE Optical Engineering Press, 1997, Vol. 2, pp. 325–345.

    Google Scholar 

  17. Gao, W., Araki, T., Kiyono, S., Okazaki, Y., and Yamanaka, M., Precision Nano-fabrication and Evaluation of a Large Area Sinusoidal Grid Surface for a Surface Encoder, Precision Engineering, 2003, Vol. 27, pp. 289–298.

    Article  Google Scholar 

  18. Precitech User Mannual, Precitech Inc. 1996.

    Google Scholar 

  19. Fang, F.Z., Liu, X.D., and Lee, L.C., Ultra-precision Machining of Brittle Materials, Nanotechnology and Precision Engineering, 2003;1:38–47.

    Google Scholar 

  20. Fang, F.Z., Liu, X.D., and Lee, L.C., Micro Machining of Optical Glasses, Sadhana—Academy Proceedings in Engineering Sciences, 2003, Vol. 28, No. 5, pp. 945–956.

    CAS  Google Scholar 

  21. Komanduri, R., On Material Removal Mechanisms in Finishing of Advanced Cermics and Glasses, Annals of the CIRP, 1996;45(1):509–514.

    Google Scholar 

  22. Fang, F.Z. and Yuan, Z.J., Ultra-precision Cutting for Gallium Arsenide, Proceedings of ASPE Annual Meeting, 1999, pp. 62–66.

    Google Scholar 

  23. Fang, F.Z., Venkatesh, V.C., and Zhang, G.X., Diamond Turning of Soft Semiconductors to Obtain Nanometric Mirror Surfaces, International Journal of Advanced Manufacturing Technology, 2002;19(9):437–641.

    Article  Google Scholar 

  24. Yuan, Z.J., Zhou, M., and Dong, S., Effect of Diamond Tool Sharpness on Minimum Cutting Thickness and Cutting Surface Integrity in Ultra-precision Machining, Journal of Materials Processing Technology, 62:327–330.

    Google Scholar 

  25. Fang, F.Z., Venkatesh, V.C., and Zhang, G.X., Diamond Turning of Soft Semi-conductors to Obtain Nanometric Mirror Surfaces, International Journal of Advanced Manufacturing Technology, 2002;19(9):637–641.

    Article  Google Scholar 

  26. Fang, F.Z. and Zhang, G.X., An Experimental Study of Optical Glass Machining, International Journal of Advanced Manufacturing Technology, 2004;24:155–160.

    Article  Google Scholar 

  27. Fang, F.Z. and Zhang, G.X., An Experimental Study of Edge Radius Effect in Cutting Single Crystal Silicon, International Journal of Advanced Manufacturing Technology, 2003;22:703–707.

    Article  CAS  Google Scholar 

  28. Morris, J.C., Callahan, D.L., Kulik, J., Patten, J.A., and Scattergood, R.O., Origins of the Ductile Regime in Single-point Diamond Turning of Semiconductors, Journal of the American Ceramic Society, 78(8):2015–2020.

    Google Scholar 

  29. Puttick, K.E., Whitmore, L.C., Chao, C.L., and Gee, A.E., Transmission Electron Microscopy of Nanomachined Silicon Crystals, Photos Mag., 1994;A69(1):91.

    Article  Google Scholar 

  30. Puttick, K.E., Jeynes, C., Rudman, M., and Chao, C.L, Surface Damage in Nanomachined Silicon, Semicond. Sci. Technol., 1992;7(2):255.

    Article  CAS  Google Scholar 

  31. Chao, C.L. and Gee, A.E., Material Removal Mechanism Involved in the Single-point Diamond Turning of Brittle Materials, Proceedings of ASPE Annual Meeting, 1991, pp. 112–115.

    Google Scholar 

  32. Fang, E.Z. and Chen, L., Ultra-precision Cutting for ZKN7 Glass, Annals of the CIRP, 2000;49(1):17–20.

    Article  Google Scholar 

  33. Blackley, W.S. and Scattergood, R.O., Ductile Regime Model for Diamond Turning of Brittle Materials, Precision Engineering, 1991;13(2):95–102.

    Article  Google Scholar 

  34. Shibata, T., Fujii, S., Makino, Eiji, E., and Ikeda, M., Ductile-regime Turning Mechanism of Single-crystal Silicon, Precision Engineering, 1996;18(3):129–137.

    Article  Google Scholar 

  35. Komanduri, R., Lucca, D.A., and Tani, Y., Technological Advances in Fine Abrasive Processes, Keynote Paper, Annals of the CIRP, 1997;46(2):545–596.

    Google Scholar 

  36. Paul, E., Evans, C.J., and McGlauflin, M., Chemical Aspects of Tool Wear in Single Point Diamond Turning, Precision Engineering, 1996;18(1):4–19.

    Article  Google Scholar 

  37. Schinker, M.G. and Doll, W., Turning of Optical Glasses at Room Temperature, SPIE, 1987;802:70–80.

    Google Scholar 

  38. Schinker, M.G., Subsurface Damage Mechanisms at High-speed Ductile Machining of Optical Glasses, Precision Engineering, 1991;13(3):208–218.

    Article  Google Scholar 

  39. Shimada, S. and Ikawa, N., Brittle-ductile Transition Phenomena in Microindentation and Micromachining, Annals of the CIRP, 1995;44(1):523–526.

    Google Scholar 

  40. Brehm, R., van Dun, K., Teunissen, J.C.G., and Haisma, J., Transparent Single-point Turning of Optical Glass, Precision Engineering, 1979;1(4):207–213.

    Article  Google Scholar 

  41. Puttick, K.E., Rudman, M.R., Smith, K.J., Franks, A., and Lindsey, K., Single-point Diamond Machining of Glasses, Proc. R. Soc. Lond., 1989, A 426, 19–30.

    Google Scholar 

  42. Gee, A.E., Spragg, R.C., Puttick, K.E., and Rudman, M.R., Single-point Diamond Form-finishing of Glasses and other Macroscopically Brittle Materials, SPIE, 1991;1573:39–48.

    Article  Google Scholar 

  43. Fang, F.Z., Nano-turning of Single Crystal Silicon, Journal of Materials Processing Technology, 1998;82;95–101.

    Article  Google Scholar 

  44. Fang, F.Z., Venkatesh, V.C., Diamond Cutting of Silicon with Nanometric Finish, Annals of the CIRP, 1998;47(1):45–49.

    Google Scholar 

  45. Yan, J., Yoshino, M., Kuriagawa, T., Shirakashi, T., Syoji, K., and Komanduri, R., On the Ductile Machining of Silicon for Micro Electro-mechanical Systems (MEMS), Opto-electronic and Optical Applications, Materials Science and Engineering, 2001;A297:230–234.

    CAS  Google Scholar 

  46. Adams, D.P., Vasile, M.J., and Krishnan, Microgrooving and Microthreading Tools for Fabricating Curvilinear Features, Precision Engineering, 2000, Vol. 24, pp. 347–356.

    Article  Google Scholar 

  47. Vasile, M.J., Nassar, R., Xie, J., and Guo, H., Microfabrication Techniques Using Focused ion Beams and Emergent Applications, Micron, 1999, Vol. 30, pp. 235–244.

    Article  CAS  Google Scholar 

  48. Chyan, H.C. and Ehmann, K.F., Development of Curved Helical Micro-drill Point Technology for Micro-hole Drilling, Mechatronics, 1998, Vol. 8, pp. 337–358.

    Article  Google Scholar 

  49. Sugawara, A. and Inagaki, K., Effect of Workpiece Structure on Burr Formation in Micro-drilling, Precision Engineering, 1982;4:9–14.

    Article  Google Scholar 

  50. Yang, Z., Tan, Q., and Wang, L., Principle of Precision Micro-drilling with Axial Vibration of Low Frequency, International Journal of Production Research, 2002;40:1421–1427.

    Article  Google Scholar 

  51. Egashira, K. and Mizutani, K., Micro-drilling of Monocrystalline Silicon Using a Cutting Tool, Precision Engineering, 2002;26:263–268.

    Article  Google Scholar 

  52. Ko, S.L. and Dornfeld, D., Burr Formation and Fracture in Oblique Cutting, Journal of Materials Processing Technology, 1996;62:24–36.

    Article  Google Scholar 

  53. Fang, F.Z. and Liu, Y.C., On Minimum Exit-burr in Micro Cutting, Journal of Micromechanics and Micro Engineering, 2004;14:984–988.

    Article  Google Scholar 

  54. Lucca, D.A., Rhore, R.L., and Komanduri, R., Energy Dissipation in the Ultra-precision Machining of Copper, Annals of the CIRP, 1991;40(1):69–72.

    Google Scholar 

  55. Tamaniau, D.A. and Dautzenberg, J.H., Bluntness of the Tool and Process Forces in High-precision Machining, Annals of the CIRP, 1991;40(1):65–68.

    Google Scholar 

  56. Abdelmoneim, M.Es. and Scrutton, R.F., Tool Edge Roundness and Stable Build-up Formation in Finishing Machining, Transactions ASME, Nov 1974;1258–1267.

    Google Scholar 

  57. Fang, F.Z., Development of High Speed Shuttle System, SIMTech report, 2004.

    Google Scholar 

  58. http://pm,mech,tohoku.ac.jp.

    Google Scholar 

  59. Chen, W.K., Kuriyagawa, T., Huang, H., Ono, H., Saeki, M., and Syoji, K., A Novel for Error Compensation Technique for WC Mould Insert Machining Utilizing Parallel Grinding Technology, Key Engineering Materials, 2004;257:141–146.

    Google Scholar 

  60. McGeough, J.A., Advanced Methods of Machining, London, New York, Chapman and Hall, 1988.

    Google Scholar 

  61. Weller, E.J. and Haavisto, M., Nontraditional Machining Processes, Dearborn, Michigan, Society of Manufacturing Engineers, Publications/Marketing Division, 1984.

    Google Scholar 

  62. Reynaerts, D., Heeren, P.H., and van Brussel, H., Microstructuring of Silicon by Electro-discharge Machining (EDM)—Part I: Theory, Sensor and Actuators A (Physical), 1997;60:212–218.

    Article  Google Scholar 

  63. Heeren, P.H., Reynaerts, D., van Brussel, H., Beuret, C., Larsson, O., and Bertholds, A., Microstructuring of Silicon by Electro-discharge Machining (EDM)—Part II: Applications, Sensor and Actuators A (Physical), 1997;61:379–386.

    Article  Google Scholar 

  64. Reynaerts, D., Meeusen, W., van Brussel, H., Reyntjens, S., and Puers, R., Production of Seismic Mass Suspensions in Silicon by Electro-discharge Machining, Journal of Micromechanics and Microengineering, 1999;9:206–210.

    Article  CAS  Google Scholar 

  65. Reynaerts, D., Meeusen, W., Song, X.Z., van Brussel, H., Reyntjens, S., Bruyker, D.D., and Puers, R., Integrating Electro-discharge Machining and Photolithography: Work in Progress, Journal of Micromechanics and Microengineering, 2000;10:189–195.

    Article  CAS  Google Scholar 

  66. Wong, Y.S., Rahman, M., Lim, H.S. Han, H., and Ravi, N., Investigation of Micro-EDM Material Removal Characteristics Using Single RC-pulse Discharges, Journal of Materials Processing Technology, 2003;140:303–307.

    Article  Google Scholar 

  67. Benavides, G.L., Bieg, L.F., Saavedra, M.P., and Bryce, E.A., High Aspect Ratio Meso-scale Parts Enabled by Wire Micro-EDM, Microsystem Technologies, 2002;8:395–401.

    Article  CAS  Google Scholar 

  68. Reynaerts, D., Meeusen, W., and van Brussel, H., Machining of Three-dimensional Microstructures in Silicon by Electro-discharge Machining, Sensor and Actuators A (Physical), 1998;67:159–165.

    Article  Google Scholar 

  69. Lim, H.S., Wong, Y.S., Rahman, M., and Lee, M.K.E., A Study on the Machining of High-aspect Ratio Micro-structures using Micro-EDM, Journal of Materials Processing Technology, 2003;140: 318–325.

    Article  Google Scholar 

  70. Lim, H.S., Kumar, S., and Rahman, M., Improvement of form Accuracy in Hybrid Machining of Microstructures, Journal of Electronic Materials, 31:1032–1038.

    Google Scholar 

  71. Yan, B.H., Wang, A.C., Huang, C.Y., and Huang, F.Y., Study of Precision Micro-holes in Borosilicate Glass Using MicroEDMCombined with Micro Ultrasonic Vibration Machining, International Journal of Machine Tools and Manufacture, 2002;42:1105–1112.

    Article  Google Scholar 

  72. Muttamara, A., Fukuzawa, Y., Mohri, N., and Tani, T., Probability of Precision Micro-machining of Insulating Si3N4 Ceramics by EDM, Journal of Materials Processing Technology, 2003;140:243–247.

    Article  CAS  Google Scholar 

  73. Zhao, W.S., Wang, Z.L., Di, S.C., Chi, G.X., and Wei, H.Y., Ultrasonic and Electric Discharge Machining to Deep and Small Holes on Titanium Alloy, Journal of Materials Processing Technology, 120:101–106.

    Google Scholar 

  74. Meeusen, W., Clijnen, J., Reynaerts, D., van Brussel, H., Reyntjens, S., and Puers, R., Micro-electro-discharge Machining as Microsenesor Fabrication Technology, IEEE Sensors Journal, 2003;3:632–639.

    Article  Google Scholar 

  75. Kuo, C.L., Huang, J.D., and Liang, H.Y., Fabrication of 3D Metal Microstructures Using a Hybrid Process of Micro-EDM and Laser Assembly, International Journal of Advanced Manufacturing Technology, 2003;21:796–800.

    Article  Google Scholar 

  76. Takahata, K., Shibaike, N., and Guckel, H., High-aspect-ratio WC-Co Microstructure Produced by the Combination of LIGA and Micro-EDM, Microsystem Technologies, 2000;6:175–178.

    Article  Google Scholar 

  77. Liu, C.C. and Huang, J.I., Micro-electrode Discharge Machining of TiN/Si3N4 Composites, British Ceramic Transactions, 2000, Vol. 99, pp. 149–152.

    Article  CAS  Google Scholar 

  78. Suzuki, K., Iwai, M., Sharma, A., Uematsu, T., and Kunieda, M., A Study to use the Electrically Conductive CVD Diamond as Electrodes in Electrical Discharge Machining, Key Engineering Materials, 2004, Vol. 257–258, pp. 535–540.

    Article  Google Scholar 

  79. Yu, Z.Y., Masuzawa, T., and Fujino, M., Micro-EDM for Three-dimensional Cavities-Development of Uniform Wear Method, Annals of the CIRP, 1998, Vol. 47, pp. 169–172.

    Article  Google Scholar 

  80. Zhao, W.S., Zhang, Y., Wang, Z.L., Jia, B.X., Hu, F.Q., and Li, Z.Y., Research on a Micro EDM Equipment and Its Application, Key Engineering Materials, 2004, Vol. 259–260, pp. 567–571.

    Google Scholar 

  81. Mohri, N., Takezawa, H., Furutani, K., Ito, Y., and Sata, T., A New Process of Additive and Removal Machining by EDM with a Thin Electrode, Annals of the CIRP, 2000, Vol. 49, pp. 123–126.

    Google Scholar 

  82. Guenat, O.T., Hirata, T., Akashi, T., Gretillat, M.A., and de Rooij, N.F., A Pneumatic Air Table Realized by Micro-EDM, Journal of Microelectromechanical System, 1998;7:380–386.

    Article  Google Scholar 

  83. Masuzawa, T., Tsukamoto, J., and Fujino, M., Drilling of Deep Microholes by EDM, Annals of the CIRP, 1989, Vol. 38, pp. 195–198.

    Google Scholar 

  84. Rajurkar, K.P. and Yu, Z.Y., Micro EDM can Produce Micro Parts, Manufacturing Engineering, 2000;125:68–75.

    Google Scholar 

  85. Weng, F.T. and Her, M.G., Study of the Batch Production of Micro Parts Using the EDM Process, International Journal of Advanced Manufacturing Technology, 2002;19:266–270.

    Article  Google Scholar 

  86. Yeo, S.H. and Yap, G.G., A Feasibility Study on the Micro Electro-discharge Machining Process for Photomask Fabrication, International Journal of Advanced Manufacturing Technology, 2001;18:7–11.

    Article  Google Scholar 

  87. Kuo, C.L., Huang, J.D., and Liang, H.Y., Precise Micro-assembly through an Integration of Micro-EDM and Nd-YAG, International Journal of Advanced Manufacturing Technology, 2002;20:454–458.

    Article  Google Scholar 

  88. Yeo, S.H. and Murali, M., A New Technique Using Foil Electrodes for the Electro-discharge Machining of Micro Grooves, Journal of Micromechanics and Microengineering, 2003, Vol. 13, pp. N1–N5.

    Article  CAS  Google Scholar 

  89. Masuzawa, T., Kuo, C.L., and Fujino, M., A Combined Electrical Machining Process for Micronozzle Fabrication, Annals of the CIRP, 1994, Vol. 49, pp. 189–192.

    Google Scholar 

  90. Masuzawa, T., Fujino, M., and Kobayashi, K., Wire Electrico-discahrge Grinding for Micro-machining, Annals of the CIRP, 1985, Vol. 34, pp. 431–434.

    Article  Google Scholar 

  91. Landolt, D., Chauvy, P.F., and Zinger, O., Electrochemical Micromachining, Polishing and Surface Structuring of Metals: Fundamental Aspects and New Developments, Electrochimica Acta, 2003;48:3185–3201.

    Article  CAS  Google Scholar 

  92. Bhattacharyya, B., Mitra, S., and Boro, A.K., Electrochemical Machining: New Possibilities for Micromachining, Robotics and Computer-Integrated Manufacturing, 2002;18:283–289.

    Article  Google Scholar 

  93. Bhattacharyya, B., Doloi, B., and Sridhar, P.S., Electrochemical Micro-machining: New Possibilities for Micro-manufacturing, Journal of Materials Processing Technology, 2001;113:301–305.

    Article  Google Scholar 

  94. Bhattacharyya, B. and Munda, J., Experimental Investigation into Electrochemical Micromachining (EMM) Process, Journal of Materials Processing Technology, 2003;140:287–291.

    Article  CAS  Google Scholar 

  95. Ferri, Y., Piotrowski, O., Chauvy, P.F., Madore, C., and Landolt, D., Two-level Electrochemical Micromachining of Titanium for Device Fabrication, Journal of Micromechanics and Microengineering, 2001;11;522–527.

    Article  CAS  Google Scholar 

  96. Lee, E.S., Park, J.W., and Moon, Y.H., A Study on Electrochemical Micromachining for Fabrication of Microgrooves in an Air-lubricated Hydrodynamic Bearing, International Journal of Advanced Manufacturing Technology, 2002;20:720–726.

    Article  Google Scholar 

  97. Bhattacharyya, B., and Munda, J., Experimental Investigation on the Influence of Electrochemical Machining Parameters on Machining Rate and Accuracy in Micromachining Domain, International Journal of Machine Tools & Manufacture, 2003;43:1301–1310.

    Article  Google Scholar 

  98. Park. J.W., Lee, E.S., Won, C.H., and Moon, Y.H., Development of Electrochemical Micro Machining for Air-lubricated Hydrodynamic Bearings, Microsystem Technologies, 2002;9:61–66.

    Article  CAS  Google Scholar 

  99. Lohrengel, M.M., Kluppel, I., Rosenkranz, C., Bettermann, H., and Schultze, J.W., Microscopic Investigations of Electrochemical Machining of Fe in NaNO3, Electrochimica Acta, 2003;48:3202–3211.

    Article  CAS  Google Scholar 

  100. De Silva, A.K.M. and McGeough, J.A., Process Monitoring of Electrochemical Micromachining, Journal of Materials Processes Technology, 1998;76:165–169.

    Article  Google Scholar 

  101. Madore, C. and Landolt, D., Electrochemical Micromachining of Controlled Topographies on Titanium for Biological Applications, Journal of Micromechanics and Microengineering, 1997;7:270–275.

    Article  CAS  Google Scholar 

  102. Sun, X.Q., Masuzawa, T., and Fujino, M., Micro Ultrasonic Machining and its Applications in MEMS, Sensor and Actuators A (Physical), 57:159–164.

    Google Scholar 

  103. Yeo, S.H. and Tan, L.K., Effects of Ultrasonic Vibrations in Micro Electro-discharge Machining of Microholes, Journal of Micromechanics and Microengineering, 1999;9:3345–352.

    Article  Google Scholar 

  104. Huang, H., Zhang, H., Zhou, L., and Zheng H.Y., Ultrasonic Vibration Assisted Electro-discharge Machining of Microholes in Nitinol, Journal of Micromechanics and Microengineering, 2003;13:693–700.

    Article  Google Scholar 

  105. Gao, C.S. and Liu, Z.X., A study of Ultrasonically Aided Micro-electro-discharge Machining by the Application of Workpiece Vibration, Journal of Materials Processing Technology, 2003;139:226–228.

    Article  Google Scholar 

  106. Wang, A.C., Yan, B.H., Li, X.T., and Huang, F.Y., Use of Micro Ultrasonic Vibration Lapping to Enhance the Precision of Microholes Drilled by Micro Electro-discharge Machining, International Journal of Machine Tools and Manufacture, 2002;42:915–923.

    Article  Google Scholar 

  107. Egashira, K. and Masuzawa, T., Microultrasonic Machining by the Application of Workpiece Vibration, Annals of the CIRP, 1999;48:131–134.

    Google Scholar 

  108. Juriyagawa, T., Shirosawa, T., Saitoh, O., and Syoji, K., Development of Micro Ultrasonic Abrasive Machining System, JSME International Journal Series C, Dynamics, Control, Robotics, Design and Manufacturing, 2002;45:593–600.

    Google Scholar 

  109. Ohwada, K., Negoro, Y., Konaka, Y., and Oguchi, T., Uniform Groove-depths in (110) Si Anisotropic Etching by Ultrasonic Waves and Application to Accelerometer Fabrication, Sensors and Actuators A, 1995;50:93–98.

    Article  Google Scholar 

  110. Onikura, H., Inoue, R., Okuno, K., and Ohnishi, O., Fabrication of Electroplated Micro Grinding Wheels and Manufacturing of Microstructures with Ultrasonic Vibration, Key Engineering Materials, 2003;238–239:9–14.

    Google Scholar 

  111. Takahata, K. and Gianchandani, Batch Mode Micro-electro-discharge Machining, Journal of Microelectromechanical Systems, 2002;11:102–110.

    Article  CAS  Google Scholar 

  112. http://www.ipt.fhg.de/cms.php?id=1516.

    Google Scholar 

  113. Alting, L., Kimura, F., Hansen, H. N., Bissacco, G., Micro Engineering, Annals of the CIRP, 2003, Vol. 52, No. 2, pp. 635–657.

    Google Scholar 

  114. Mounier, E., MEMS, the Alternative Semi-conductor Business, Proc. of the 3rd Euspen International Conference, Eindhoven, Netherlands, 2002, pp. 391–394.

    Google Scholar 

  115. www.nexus-mems.com.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Fang, F.Z., Liu, K., Kurfess, T.R., Lim, G.C. (2006). Tool-based Micro Machining and Applications in MEMS. In: Leondes, C.T. (eds) MEMS/NEMS. Springer, Boston, MA. https://doi.org/10.1007/0-387-25786-1_18

Download citation

Publish with us

Policies and ethics