[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Differential Sandwich-Type Results for Symmetric Functions Associated with Pascal Distribution Series

  • Published:
Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences) Aims and scope Submit manuscript

Abstract

In this paper we obtain some applications of the theory of differential subordination, differential superordination, and sandwich-type results for some subclasses of symmetric functions associated with Pascal distribution series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. R. M. Ali, V. Ravichandran, M. Hussain Khan, and K. G. Subramanian, ‘‘Differential sandwich theorems for certain analytic functions,’’ Far East J. Math. Sci. 15, 87–94 (2004).

    MathSciNet  MATH  Google Scholar 

  2. M. K. Aouf, F. M. Al-Oboudi, and M. M. Haidan, ‘‘On some results for \(\lambda\)-spirallike and \(\lambda\)-Robertson functions of complex order,’’ Publ. Inst. Math. (Beograd)(N.S.) 75, 93–98 (2005).

  3. M. K. Aouf and T. Bulboacă, ‘‘Subordination and superordination properties of multivalent functions defined by certain integral operator,’’ J. Franklin Inst. 347, 641–653 (2010). https://doi.org/10.1016/j.jfranklin.2010.01.001

    Article  MathSciNet  MATH  Google Scholar 

  4. M. K. Aouf, R. M. El-Ashwah, and S. M. El-Deeb, ‘‘Certain classes of univalent functions with negative coefficients and \(n\)-starlike with respect to certain points,’’ Mat. Vesnik 62, 215–226 (2010).

    MathSciNet  MATH  Google Scholar 

  5. T. Bulboacă, ‘‘A class of superordination-preserving integral operators,’’ Indagationes Math. 13, 301–311 (2002). https://doi.org/10.1016/S0019-3577(02)80013-1

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Bulboacă, ‘‘Classes of first order differential superordinations,’’ Demonstr. Math. 35 (2), 287–292 (2002). https://doi.org/10.1515/dema-2002-0209

    Article  MathSciNet  MATH  Google Scholar 

  7. T. Bulboacă, Differential Subordinations and Superordinations: Recent Results (House of Scientific Book Publ., Cluj-Napoca, 2005).

  8. S. M. El-Deeb and T. Bulboacă, ‘‘Differential sandwich-type results for symmetric functions connected with a q-analog integral operator,’’ Mathematics 7, 1185 (2019). https://doi.org/10.3390/math7121185

    Article  Google Scholar 

  9. S. M. El-Deeb, T. Bulboacă, and J. Dziok, ‘‘Pascal distribution series connected with certain subclasses of univalent functions,’’ Kyungpook Math. J. 59, 301–314 (2019). https://doi.org/10.5666/KMJ.2019.59.2.301

    Article  MathSciNet  MATH  Google Scholar 

  10. M. S. Liu, ‘‘On certain subclass of analytic functions,’’ J. South China Normal Univ. Natur. Sci. Ed., No. 4, 15–20 (2002).

  11. T. H. MacGregor, ‘‘The radius of univalence of certain analytic functions,’’ Proc. Am. Math. Soc. 14, 514–520 (1963). https://doi.org/10.1090/S0002-9939-1963-0148891-3

    Article  MathSciNet  MATH  Google Scholar 

  12. S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics, vol. 225, (Marcel Dekker, New York, 2000).

  13. S. S. Miller and P. T. Mocanu, ‘‘Subordinants of differential superordinations,’’ Complex Var., Theory Appl.: Int. J. 48, 815–826 (2003). https://doi.org/10.1080/02781070310001599322

    Article  MATH  Google Scholar 

  14. A. Muhammad, ‘‘Some differential subordination and superordination properties of symmetric functions,’’ Rend. Semin. Mat. Univ. Politec. Torino 69 (3), 247–259 (2011).

    MathSciNet  MATH  Google Scholar 

  15. K. Sakaguchi, ‘‘On a certain univalent mapping,’’ J. Math. Soc. Jpn. 11, 72–75 (1959). https://doi.org/10.2969/jmsj/01110072

    Article  MathSciNet  MATH  Google Scholar 

  16. G. S. Salagean, ‘‘Subclasses of univalent functions,’’ in Complex Analysis — Fifth Romanian-Finnish Seminar, Lect. Notes Math., vol. 1013, (Springer, Berlin, 1983), pp. 362–372. https://doi.org/10.1007/BFb0066543

  17. G. M. Shah, ‘‘On the univalence of some analytic functions,’’ Pac. J. Math. 43, 239–250 (1972).

    Article  MathSciNet  Google Scholar 

  18. T. N. Shanmugam, V. Ravichandran, and S. Sivasubramanian, ‘‘Differential sandwich theorems for some subclasses of analytic functions,’’ Aust. J. Math. Anal. Appl. 3, 8 (2006).

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. M. El-Deeb or T. Bulboacă.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Deeb, S.M., Bulboacă, T. Differential Sandwich-Type Results for Symmetric Functions Associated with Pascal Distribution Series. J. Contemp. Mathemat. Anal. 56, 214–224 (2021). https://doi.org/10.3103/S1068362321040105

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068362321040105

Keywords:

Navigation