Abstract
An anatomically accurate model of the conducting airways is essential for adequately simulating gas mixing, particle deposition, heat and water transfer, and fluid distribution. We have extended a two-dimensional tree-growing algorithm to three dimensions for generation of a host-shape dependent three-dimensional conducting airway model. Terminal branches in the model are both length limited and volume-supplied limited. A limit is imposed on the maximum possible branch angle between a daughter and parent branch. Comparison of the resulting model with morphometric data shows that the algorithm produces branching and length ratios, path lengths, numbers of branches, and branching angles very close to those from the experimental data. The correlation between statistics from the generated model and those from morphometric studies suggests that the conducting airway structure can be described adequately using a “supply and demand” algorithm. The resulting model is a computational mesh that can be used for simulating transport phenomena. © 2000 Biomedical Engineering Society.
PAC00: 8719Uv, 8710+e
Similar content being viewed by others
REFERENCES
Bradley, C. P., A. J. Pullan, and P. J. Hunter. Geometric modeling of the human torso using cubic Hermite elements. Ann. Biomed. Eng. 25:96–111, 1997.
Chang, H. K., and L. E. Farhi. On mathematical analysis of gas transport in the lung.Respir. Physiol. 18:370–385, 1973.
Darquenne, C., and M. Paiva. One-dimensional simulation of aerosol transport and deposition in the human lung. J. Appl. Physiol. 77(6):2889–2898, 1994.
de Vries, W. R., S. C. M. Luijendijk, and A. Zwart. Helium and sulfur hexaflouride washout in asymmetric lung models. J. Appl. Physiol.: Respir., Environ. Exercise Physiol. 51:1122–1130, 1981.
Gillis, H. L., and K. R. Lutchen. How heterogeneous bronchoconstriction affects ventilation distribution in human lungs: A morphometric model. Ann. Biomed. Eng. 27:14–22, 1999.
Haefeli-Bleuer, B., and E. R. Weibel. Morphometry of the human pulmonary acinus. Anat. Rec. 220:401–414, 1988.
Horsfield, K. Organization of the tracheobronchial tree. In: Scientific Foundations of Respiratory Medicine, edited by J. G. Scadding and G. Cumming. London: William Heinemann, 1981.
Horsfield, K., and G. Cumming. Angles of branching and diameters of branches in the human bronchial tree. Bull. Math. Biophys. 29:245–259, 1967.
Horsfield, K., and G. Cumming. Morphology of the bronchial tree in man. J. Appl. Physiol. 24:373–383, 1968.
Horsfield, K., G. Dart, D. E. Olsen, G. F. Filley, and G. Cumming. Models of the human bronchial tree. J. Appl. Physiol. 31:207–217, 1971.
Horsfield, K., F. G. Relea, and G. Cumming. Diameter, length and branching ratios in the bronchial tree. Respir. Physiol. 26:351–356, 1976.
Kitaoka, H., R. Takaki, and B. Suki. A three-dimensional model of the human airway tree. J. Appl. Physiol. 87(6):2207–2217, 1999.
Pack, A., M. B. Hooper, W. Nixon, and J. C. Taylor. A computational model of pulmonary gas transport incorporating effective diffusion. Respir. Physiol. 29:101–124, 1977.
Paiva, M., and L. A. Engel. Pulmonary interdependence of gas transport. J. Appl. Physiol.: Respir., Environ. Exercise Physiol. 47:296–305, 1979.
Perzl, M. A., H. Schulz, H. G. Paretzke, K. H. Englmeier, and J. Heyder. Reconstruction of the lung geometry for the simulation of aerosol transport. J. Aerosol Medicine 9(3):409–418, 1996.
Phalen, R. F., H. C. Yeh, G. M. Schum, and O. G. Raabe. Application of an idealized model to morphometry of the mammalian tracheobronchial tree. Anat. Rec. 190:167–176, 1978.
Phalen, R. F., M. J. Oldham, C. B. Beaucage, T. T. Crocker, and J. D. Mortensen. Postnatal enlargement of human tracheobronchial airways and implications for particle deposition. Anat. Rec. 212:368–380, 1985.
Raabe, O. G., H. C. Yeh, G. M. Schum, and R. F. Phalen. Tracheobronchial geometry-Human, Dog, Rat, Hamster. Lovelace Foundation for Medical Education and Research, 1976.
Scherer, P. W., L. H. Shendalman, and N. M. Green. Simultaneous diffusion and convection in a single breath lung washout. Bull. Math. Biophys. 34:393–412, 1972.
Snyder, B., D. R. Dantzker, and M. J. Jaeger. Flow partitioning in symmetric cascades of branches. J. Appl. Physiol.: Respir., Environ. Exercise Physiol. 51(3):598–606, 1981.
Taulbee, D. B., and C. P. Yu. A theory of aerosol deposition in the human respiratory tract. J. Appl. Physiol. 38(1):77–85, 1975.
Thurlbeck, A., and K. Horsfield. Branching angles in the bronchial tree related to order of branching. Respir. Physiol. 41:173–181, 1980.
U.S. National Library of Medicine. Visual Man Project. CDROM, 1996
Verbanck, S., and M. Paiva. Model simulations of gas mixing and ventilation distribution in the human lung.J. Appl. Physiol. 69(6):2269–2279, 1990.
Wang, C. Y., J. B. Bassingthwaighte, and L. J. Weissman. Bifurcating distributive system using Monte Carlo method. Math. Comput. Modeling. 16(3):91–98, 1992.
Weibel, E. R., Morphometry of the Human Lung. Berlin: Springer, 1963.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Tawhai, M.H., Pullan, A.J. & Hunter, P.J. Generation of an Anatomically Based Three-Dimensional Model of the Conducting Airways. Annals of Biomedical Engineering 28, 793–802 (2000). https://doi.org/10.1114/1.1289457
Issue Date:
DOI: https://doi.org/10.1114/1.1289457