[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Experimental validation of multi-loop controllers for two-level cascaded positive output boost converter

  • Original Article
  • Published:
Journal of Power Electronics Aims and scope Submit manuscript

Abstract

In this paper, an investigation of multi-loop controllers (MLCs) for two-level cascaded positive output boost converter (TLCPOBC) operating in the continuous conduction mode (CCM) was carried out. The TLCPOBC is a recently designed DC–DC converter that can offer a higher voltage transfer ratio, good efficiency, and minimized capacitor voltage and inductance current ripples when compared to traditional DC–DC converters. The dynamic characteristics of the TLCPOBC are nonlinear in nature due to its switching mode operation. During line and load variations, conventional controllers are not able to overcome the dynamic characteristics. Hence, to control the output voltage and inductor current of the TLCPOBC, MLCs are suggested in this paper. The control structure of the TLCPOBC consists of two loops. Here, a fuzzy logic controller (FLC) and a proportional double integral controller (PDIC) act as an outer loop voltage controller for voltage regulation. Meanwhile, a proportional controller (PC) acts as an inner current loop for the inductor current regulation of the converter. The PC and PDIC parameters were obtained by the state-space equations of the TLCPOBC using the Ziegler–Nicholas tuning method. The rules of the FLC are derived from the characteristics of the TLCPOBC without a mathematical model. The performance of the TLCPOBC using MLCs was verified at different states by developing MATLAB/SIMULINK simulations and prototype models. Simulation and experimental results are validated to show the importance of the TLCPOBC with the designed controllers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Zhu, M., Luo, F.L.: Implementing of developed voltage lift technique on SEPIC, CUK and double-output DC–DC converters. IEEE Trans. Ind. Electron. Appl. 23(25), 674–681 (2007)

    Google Scholar 

  2. Jinno, M., Chen, P.Y., Lai, Y.C., Harada, K.: Investigation on the ripple voltage and the stability of synchronous rectifier buck converters with high output current and low output voltage. IEEE Trans. Ind. Electron. 57(3), 1008–1016 (2010)

    Article  Google Scholar 

  3. Morales-Saldana, J.A., Galarza-Quirino, R., Leyva-Ramos, J., Carbajal-Gutierrez, E.E., Ortiz-Lopez, M.G.: Modeling and control of a cascaded boost converter with a single switch. In: IECON 2006—32nd Annual Conference on IEEE Industrial Electronics, pp. 591–596 (2006)

  4. Luo, F.-L., Ye, H.: Advanced DC/DC converters, 5th edn, pp. 334–372. CRC Press, London (2006)

    Google Scholar 

  5. Perez-Pinal, F.J., Cervantes, I.: Multi-objective control for cascade boost converter with single active switch. In: 2009 IEEE International Electric Machines and Drives Conference, pp. 1858–1862 (2009)

  6. Luo, F.L., Ye, H.: Positive output cascade boost converters. IEE Proc. Electric Power Appl. 151(5), 590–606 (2004)

    Article  Google Scholar 

  7. Ghaderi, D., Çelebi, M.: Implementation of PI controlled cascaded boost power converters in parallel connection with high efficiency. J. Electric. Syst. 13(2), 307–321 (2017)

    Google Scholar 

  8. Kanimozhi, G., Meenakshi, J.: Sreedevi VT (2017) Small signal modeling of a DC–DC type double boost converter integrated with SEPIC converter using state space averaging approach. Energy Proc. 117, 835–846 (2017)

    Article  Google Scholar 

  9. Padmanaban, S., Ozsoy, E., Fedák, V., Blaabjerg, F.: Development of sliding mode controller for a modified boost Cuk converter configuration. Energies 10, 1513 (2017)

    Article  Google Scholar 

  10. Ahmed, A., Hafez, A.: Multi-level cascaded DC/DC converters for PV applications. Alex Eng J 54(4), 1135–1146 (2015)

    Article  Google Scholar 

  11. Ozdemir, A., Erdem, Z.: Double-loop PI controller design of the DC–DC boost converter with a proposed approach for calculation of the controller parameters. J Syst Control Eng 232(2), 137–148 (2017)

    Google Scholar 

  12. Serna-Garcés, S.I., Montoya, D.G., Ramos-Paja, C.A.: Control of a charger/discharger DC/DC converter with improved disturbance rejection for bus regulation. Energies 11, 594 (2018)

    Article  Google Scholar 

  13. Licea, M.A.R., Pinal, F.J.P., Gutiérrez, A.I.B., Ramírez, C.A.H., Perez, J.C.N.: A reconfigurable buck, boost, and buck-boost converter: unified model and robust controller. Math Probl Eng 2018, 1–8 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  14. Asma, C., Abdelaziz, Z., Nadia, Z.: Dual loop control of DC–DC boost converter based cascade sliding mode control. In: International Conference on Green Energy Conversion Systems (GECS) (2017)

  15. Ramash Kumar, K.: Variable frequency based sliding Model control for positive output elementary boost converter. J. Adv. Res. Dyn. Control Syst. 9(18), 1125–1142 (2017)

    Google Scholar 

  16. Wiatr, P., Kryński, A.: Model predictive control of multilevel cascaded converter with boosting capability—experimental results. Bull. Pol. Acad. Sci. Tech. Sci. 65(5), 589–599 (2017)

    Google Scholar 

  17. Ramash Kumar, K.: Implementation of sliding mode controller plus proportional integral controller for negative output elementary boost converter. Alex Eng J. 55(2), 1429–1445 (2016)

    Article  Google Scholar 

  18. Kalaivani, R., Ramash Kumar, K., Jeevananthan, S.: Implementation of VSBSMC plus PDIC for fundamental positive output super lift-Luo converter. J. Electric. Eng. 16(4), 243–258 (2016)

    Google Scholar 

  19. Ramash Kumar, K., Jeevananthan, S.: Analysis, design and implementation of hysteresis modulation sliding mode controller for negative output elementary boost converter. J. Electric Power Compon. Syst. 40(3), 292–311 (2012)

    Article  Google Scholar 

  20. Ramash Kumar, K., Jeevananthan, S.: Sliding mode control design for current distribution control in paralled positive output elementary super lift Luo converters. J. Power Electron. 11(5), 639–654 (2011)

    Article  Google Scholar 

  21. Gayathri Monicka, J., Guna Sekhar, N.O., Ramash Kumar, K.: Performance evaluation of membership functions on fuzzy logic controlled AC voltage controller for speed control of induction motor drive. Int. J. Comput. Appl. 13(5), 8–12 (2011)

    Google Scholar 

  22. Ramash Kumar, K., Jeevananthan, S., Ramamurthy, S.: Improved performance of the positive output elementary split inductor-type boost converter using sliding mode controller plus fuzzy logic controller. WSEAS Trans. Syst. Control 9, 215–228 (2014)

    Google Scholar 

  23. Vijayalakshmi, S., Sree Renga Raja, T.: Time domain based digital controller for buck-boost converter. J. Electric. Eng. Technol. 9(5), 1551–1561 (2014)

    Article  Google Scholar 

  24. Arunkumar, Sivakumaran, T.S., Ramash Kumar, K.: Improved performance of linear quadratic regulator plus fuzzy logic controller for positive output super lift Luo-converter. J Electric Eng 16(3), 392–410 (2016)

    Google Scholar 

  25. Ramash Kumar, K., Kalyankumar, D., Kirbakaran, V.: An hybrid multi level inverter based DSTATCOM control. Majlesi J. Electric. Eng. 5(2), 17–22 (2011)

    Google Scholar 

  26. Ramash Kumar, K., Jeevananthan, S.: PI control for positive output elementary super lift Luo converter. Int. J. Electric. Comput. Energ. Electron. Commun. Eng. 4(3), 544–549 (2010)

    Google Scholar 

  27. Padma, S., Lakshmipathi, R., Ramash Kumar, K., Nandagopal, C.P.: A PI controller for enhancing the transient stability of multi pulse inverter based static synchronous series compensator (SSSC) with superconducting magnetic energy storage (SMES). Int. J. Electric. Comput. Eng. 4(3), 550–556 (2010)

    Google Scholar 

  28. Sivakumar, P., Rajasekaran, V., RamashKumar, K.: Investigation of intelligent controllers for variable speed PFC buck-boost rectifier fed BLDC motor drive. J. Electric. Eng. 17(4), 459–472 (2017)

    Google Scholar 

  29. Lindiya, A., PalaniI yyappan, S.: Performance comparison of various controllers for DC–DC synchronous buck converter. Elsevier Proc. Eng. 38, 2679–2693 (2012)

    Article  Google Scholar 

  30. Dinca, L., Corcau, J.-I.: PI versus fuzzy control for a DC to DC boost converter. In: International Symposium on Power Electronics, Electrical Drives, Automation and Motion, pp. 803–808 (2016)

  31. Asad, M.M., Hassan, R.B., Sherwani, F.: An analytical comparison between open loop, PID and fuzzy logic based DC–DC boost converter. Int. J. Electron. Commun. Eng. 8(11), 1787–1792 (2014)

    Google Scholar 

  32. Gaurav, A.K.: Compariosn between conventional PID and fuzzy logic controller for liquid flow control. Int. J. Innov. Technol. Explor Eng 1(1), 84–88 (2012)

    Google Scholar 

  33. Ugale, C.P., Dhumale, R.B., Dixit, V.V.: DC–DC converter using fuzzy logic controller. Int. Res. J. Eng. Technol. 2(4), 593–596 (2015)

    Google Scholar 

  34. Apte, S., Khan, A.: Study of interleaved boost converter controlling techniques. Int. Res. J. Eng. Technol. 4(4), 987–992 (2017)

    Google Scholar 

  35. Zadeh, L.A.: Fuzzy sets. Inform. control. 8, 338–353 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Saktheeswaran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saktheeswaran, R., Murali, D. Experimental validation of multi-loop controllers for two-level cascaded positive output boost converter. J. Power Electron. 20, 350–364 (2020). https://doi.org/10.1007/s43236-020-00035-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43236-020-00035-5

Keywords

Navigation