[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Fast reconstruction of time-dependent market volatility for European options

  • Published:
Computational and Applied Mathematics Aims and scope Submit manuscript

Abstract

This paper presents a robust and fast numerical algorithm to reconstruct the implied volatility as a piecewise linear function of time. This is done from a set of market observations in the Black–Scholes world. We use a fully implicit finite difference scheme to solve the partial differential equations. To find the time-dependent volatility function, we minimize the cost function defined as the sum of the squared errors between the theoretical prices and the prices observed on the market. On the last time step, right before each maturity, we apply a decomposition of the numerical option value with respect to the volatility which increases the stability and the solvability of the problem considered. We employ a predictor–corrector technique due to the non-uniqueness of the volatility function minimizer. The paper is concluded with profound numerical experiments with synthetic and real market data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Achdou Y, Pironneau O (2005) Computational methods for option pricing. SIAM Frontiers in Applied Mathematics, Philadelphia

    Book  MATH  Google Scholar 

  • Albani V, Zubelli JP (2014) Online local volatility calibration by convex regularization. Appl Anal Discrete Math 8(2):243–268

    Article  MathSciNet  MATH  Google Scholar 

  • Albani V, Ascher UM, Zubelli JP (2018) Local volatility models in commodity markets and online calibration. J Comp Fin 21(5):63–95

    Google Scholar 

  • Amster P, De Nápoli P, Zubelli JP (2009) Towards a generalization of Dupire’s equation for several assets. J Math Anal Appl 355:170–179

    Article  MathSciNet  MATH  Google Scholar 

  • Black F (1976) The pricing of commodity contracts. J Fin Econ 3:167–179

    Article  Google Scholar 

  • Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ 81(3):637–654

    Article  MathSciNet  MATH  Google Scholar 

  • Bouchouev I, Isakov V (1999) Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets. Inv Probl 15(3):95–116

    Article  MathSciNet  MATH  Google Scholar 

  • Carmona R, Nadtochiy S (2009) Local volatility dynamic models. Fin Stoch 13:1–48

    Article  MathSciNet  MATH  Google Scholar 

  • Chernogorova T, Valkov R (2014) Analysis of a finite volume element method for a degenerate parabolic equation in the zero-coupon bond pricing. Comp Appl Math 34:619–646

    Article  MathSciNet  MATH  Google Scholar 

  • Chiarella C, Craddock M, El-Hassan N (2000) The calibration of stock option pricing models using inverse problem methodology. Quant Finance Res Centre Univ Technol Sydney Res Pap Ser 39:1–14

    Google Scholar 

  • Cui Y, Rollin SdB, Germano G (2017) Full and fast calibration of the Heston stochastic volatility model. Eur J Oper Res 263(2):625–638

    Article  MathSciNet  MATH  Google Scholar 

  • Derman E, Kani I (1994) Riding on a smile. Risk 7(2):32–39

    Google Scholar 

  • Deng Z-C, Yu J-N, Yang L (2008) An inverse problem of determining the implied volatility in option pricing. J Math Anal Appl 340(1):16–31

    Article  MathSciNet  MATH  Google Scholar 

  • Deng Z-C, Hon YC, Isakov V (2016) Recovery of time-dependent volatility in option pricing model. Inv Probl 32(11):115010

    Article  MathSciNet  MATH  Google Scholar 

  • Dupire B (1994) Pricing with a smile. Risk 7(1):18–20

    Google Scholar 

  • Egger H, Engl HW (2005) Tikhonov regularization applied to inverse problem of option pricing: convergence analysis and rates. Inv Probl 21(3):1027–1045

    Article  MathSciNet  MATH  Google Scholar 

  • Ehrhardt M, Mickens R (2008) A fast, stable and accurate numerical method for the Black-Scholes equation of American options. Int J Theoret Appl Fin 11(5):471–501

    Article  MathSciNet  MATH  Google Scholar 

  • Elices A (2009) Affine concatenation. Wilmott J 1:155–162

    Article  Google Scholar 

  • Engl H, Hanke M, Neubauer A (1996) Regularization of inverse problems. Kluwer, Dordrecht

    Book  MATH  Google Scholar 

  • Georgiev S, Vulkov L (2019) Computation of time-dependent implied volatility from point observations for European options under jump-diffusion models. AIP Conf Proc 2172:070006

    Article  Google Scholar 

  • Georgiev S, Vulkov L (2020) Computational recovery of time-dependent volatility from integral observations in option pricing. J Comput Sci 39:101054

    Article  MathSciNet  Google Scholar 

  • Guterding D, Boenkost W (2018) The Heston stochastic volatility model with piecewise constant parameters—efficient calibration and pricing of window barrier options. J Comput Appl Math 343:353–362

    Article  MathSciNet  MATH  Google Scholar 

  • Heston SL (1993) A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev Fin Stud 6:327–343

    Article  MathSciNet  MATH  Google Scholar 

  • in’t Hout KJ, Volders K, (2009) Stability of central finite difference schemes on non-uniform grids for the Black–Scholes equation. Appl Numer Math 59:2593–2609

  • Isakov V (2014) Recovery of time dependent volatility coefficient by linearization. Am Inst Math Sci 3(1):119–134

    MathSciNet  MATH  Google Scholar 

  • Isakov VM, Kabanikhin SI, Shananin AA, Shishlenin MA, Zhang S (2019) Algorithm for determining the volatility function in the Black–Scholes model. Comput Math Math Phys 59:1753–1758

    Article  MathSciNet  MATH  Google Scholar 

  • Jiang LS (2005) Mathematical modeling and methods of option pricing. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Jin Y, Wang J, Kim S, Heo Y, Yoo C, Kim Y, Kim J, Jeong D (2018) Reconstruction of the time-dependent volatility function using the Black–Scholes model. Discr Dyn Nat Soc 2018:3093708

    MathSciNet  MATH  Google Scholar 

  • Kangro R, Nicolaides R (2000) Far field boundary conditions for Black–Scholes equation. SIAM J Numer Anal 38(4):1357–1368

    Article  MathSciNet  MATH  Google Scholar 

  • Kwok YK (2008) Mathematical models of financial derivatives. Springer, Berlin

    MATH  Google Scholar 

  • Lagnado R, Osher S (1997) A technique for calibrating derivative security pricing models: numerical solution of an inverse problem. J Comput Fin 1(1):14–25

    Article  Google Scholar 

  • Lishang J, Youshan T (2001) Identifying the volatility of underlying assets from option prices. Inv Probl 17:137–155

    Article  MathSciNet  MATH  Google Scholar 

  • Merton RC (1973) Theory of rational option pricing. Bell J Econ Manag Sci 4(1):141–183

    Article  MathSciNet  MATH  Google Scholar 

  • Mikhailov S, Nögel U (2003) Heston’s stochastic volatility model: implementation, calibration and some extensions. Wilmott Mag July:74–79

  • Orlando G, Taglialatela G (2017) A review on implied volatility calculation. J Comput Appl Math 320:202–220

    Article  MathSciNet  MATH  Google Scholar 

  • Putschögl W (2018) On calibrating stochastic volatility models with time-dependent parameters. arXiv:1010.1212 [q-fin.PR]

  • Samarskii AA, Vabishchevich P (2007) Numerical methods for solving inverse problems of mathematical physics. Walter de Gruyter, Berlin

    Book  MATH  Google Scholar 

  • Saporito YF, Yang X, Zubelli JP (2019) The calibration of stochastic-local volatility models: an inverse problem perspective. Comput Math Appl 77(12):3054–3067

    Article  MathSciNet  MATH  Google Scholar 

  • Ševčovič D, Csajková AU (2005) On a two face minimax method for parameter estimation of the Cox, Ingersol and Ross interest rate model. C Eur J Oper Res 13:169–188

    MATH  Google Scholar 

  • Ševčovič D, Stehlíková B, Mikula K (2011) Analytical and numerical methods for pricing financial derivatives. Nova Science, Hauppauge

    Google Scholar 

  • Tavella D, Randall C (2000) Pricing financial instruments: the finite difference method. Wiley, NY

    Google Scholar 

  • Vabishchevich PN, Klibanov MV (2016) Numerical identification of the leading coefficient of a parabolic equation. Diff Eq 52(7):896–953

    MathSciNet  MATH  Google Scholar 

  • Valkov R (2014) Fitted finite volume method for generalized Black-Scholes equation transformed on finite interval. Numer Algor 65:195–220

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S-L, Yang Y-F (2014) The total variation model for determining the implied volatility in option pricing. J Comput Anal Appl 17(1):111–124

    MathSciNet  MATH  Google Scholar 

  • Wang S-L, Yang Y-F, Zeng Y-H (2014a) The adjoint method for the inverse problem of option pricing. Math Probl Eng 2014:314104

    MathSciNet  MATH  Google Scholar 

  • Wang S-L, Zeng Y-H, Yang Y-F (2014b) Calibration of the volatility in option pricing using the total variation regularization. J Appl Math 2014:510819

    MathSciNet  MATH  Google Scholar 

  • Wilmott P (1998) Derivatives. Wiley, Chichester

    Google Scholar 

  • Windcliff H, Forsyth PA, Vetzal KR (2004) Analysis of the stability of linear boundary condition for the Black–Scholes equation. J Comput Fin 8:65–92

    Article  Google Scholar 

  • Xu Z, Jia X (2017) The calibration of volatility for option pricing models with jump diffusion processes. Appl Anal 98(4):810–827

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous reviewers for the constructive comments and suggestions, which significantly improved the quality of the paper. The authors are supported by the Bulgarian National Science Fund under Project DN 12/4 “Advanced analytical and numerical methods for nonlinear differential equations with applications in finance and environmental pollution”, 2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Slavi G. Georgiev.

Additional information

Communicated by Antonio José Silva Neto.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Georgiev, S.G., Vulkov, L.G. Fast reconstruction of time-dependent market volatility for European options. Comp. Appl. Math. 40, 30 (2021). https://doi.org/10.1007/s40314-021-01422-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40314-021-01422-9

Keywords

Mathematics Subject Classification

Navigation