[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimizing Stroke Rehabilitation: An Evaluation of Accelerometry-Based Physical Activity Intensity Measurement

  • Review
  • Published:
Current Physical Medicine and Rehabilitation Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Physical activity intensity is an underutilized biomarker in stroke rehabilitation, and current methods of measuring it—such as therapy time and self-reported exertion—have limited validity. Therefore, there is a need for more precise assessment tools. This review uses a novel framework to evaluate potential opportunities for using accelerometry to measure physical activity intensity during inpatient stroke rehabilitation.

Recent Findings

The recently developed V3 and V3 + frameworks outline key evaluation components applicable to accelerometer-based digital health technologies: verification ensures accurate motion data capture, usability validation assesses user-friendliness and effectiveness in real-world scenarios, analytical validation assesses measurement accuracy against reference standards, and clinical validation investigates the association between accelerometer data and pertinent stroke rehabilitation outcomes, such as long-term physical and cognitive function. Existing research suggests that accelerometry could be feasible for physical activity intensity characterization during inpatient stroke rehabilitation, but analytical and clinical validation research is limited. Furthermore, a standardized method should verify that accelerometers reliably capture the target range of physical activity intensities before use in inpatient stroke rehabilitation.

Summary

Despite promising evidence, further research is needed to delineate the potential utility of accelerometry for physical activity intensity characterization during inpatient stroke rehabilitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Tsao CW, Aday AW, Almarzooq ZI, Anderson CAM, Arora P, Avery CL, et al. Heart Disease and Stroke Statistics—2023 update: a Report from the American Heart Association. Circulation. 2023;147. https://doi.org/10.1161/CIR.0000000000001123.

  2. French MA, Roemmich RT, Daley K, Beier M, Penttinen S, Raghavan P, et al. Precision Rehabilitation: optimizing function, adding value to Health Care. Arch Phys Med Rehabil. 2022;103:1233–9. https://doi.org/10.1016/j.apmr.2022.01.154.

    Article  PubMed  Google Scholar 

  3. Adans-Dester C, Hankov N, O’Brien A, Vergara-Diaz G, Black-Schaffer R, Zafonte R et al. Enabling precision rehabilitation interventions using wearable sensors and machine learning to track motor recovery. Npj Digit Med. 2020;3:121. doi: 10.1038/s41746-020-00328-w ●Miller LS, Forer SK. History and Efficacy of the Three-Hour Rule. PM&R. 2021;13:535–9.

  4. Miller LS, Forer SK. History and Efficacy of the Three-Hour Rule. PM&R. 2021;13:535–9. https://doi.org/10.1002/pmrj.12532

  5. Beaulieu CL, Peng J, Hade EM, Corrigan JD, Seel RT, Dijkers MP, et al. Level of effort and 3 hour rule compliance. Arch Phys Med Rehabil. 2019;100:1827–36. https://doi.org/10.1016/j.apmr.2019.01.014.

    Article  PubMed  Google Scholar 

  6. Lohse KR, Lang CE, Boyd LA. Is more better? Using Metadata to explore dose–response relationships in Stroke Rehabilitation. Stroke. 2014;45:2053–8. https://doi.org/10.1161/STROKEAHA.114.004695.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Howley ET. Type of activity: resistance, aerobic and leisure versus occupational physical activity. Med Sci Sports Exerc. 2001;33:S364–9. https://doi.org/10.1097/00005768-200106001-00005.

    Article  CAS  PubMed  Google Scholar 

  8. Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness: definitions and distinctions for health-related research. Public Health Rep Wash DC 1974. 1985;100:126–31.

    CAS  Google Scholar 

  9. Thivel D, Tremblay A, Genin PM, Panahi S, Rivière D, Duclos M. Physical activity, inactivity, and sedentary behaviors: definitions and implications in Occupational Health. Front Public Health. 2018;6:288. https://doi.org/10.3389/fpubh.2018.00288.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Billinger SA, Arena R, Bernhardt J, Eng JJ, Franklin BA, Johnson CM, et al. Physical activity and Exercise recommendations for Stroke survivors: a Statement for Healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2014;45:2532–53. https://doi.org/10.1161/STR.0000000000000022.

    Article  PubMed  Google Scholar 

  11. Gallanagh S, Quinn TJ, Alexander J, Walters MR. Physical activity in the Prevention and Treatment of Stroke. ISRN Neurol. 2011;2011:1–10. https://doi.org/10.5402/2011/953818.

    Article  Google Scholar 

  12. Kendall BJ, Gothe NP. Effect of Aerobic Exercise interventions on mobility among Stroke patients: a systematic review. Am J Phys Med Rehabil. 2016;95:214–24. https://doi.org/10.1097/PHM.0000000000000416.

    Article  PubMed  Google Scholar 

  13. Kramer SF, Hung SH, Brodtmann A. The impact of physical activity before and after stroke on stroke risk and recovery: a Narrative Review. Curr Neurol Neurosci Rep. 2019;19:28. https://doi.org/10.1007/s11910-019-0949-4.

    Article  PubMed  Google Scholar 

  14. Lee I-M, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet. 2012;380:219–29. https://doi.org/10.1016/S0140-6736(12)61031-9.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Loprinzi PD, Addoh O. Accelerometer-determined physical activity and all-cause mortality in a national prospective cohort study of adults Post-acute Stroke. Am J Health Promot. 2018;32:24–7. https://doi.org/10.1177/0890117117720061.

    Article  PubMed  Google Scholar 

  16. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA et al. The Physical Activity Guidelines for Americans. JAMA. 2018;320:2020. https://doi.org/10.1001/jama.2018.14854

  17. Saunders DH, Greig CA, Mead GE. Physical activity and Exercise after Stroke: review of multiple meaningful benefits. Stroke. 2014;45:3742–7. https://doi.org/10.1161/STROKEAHA.114.004311.

    Article  PubMed  Google Scholar 

  18. Saunders DH, Sanderson M, Hayes S, Johnson L, Kramer S, Carter DD et al. Physical fitness training for stroke patients. Cochrane Stroke Group, editor. Cochrane Database Syst Rev [Internet]. 2020 [cited 2024 Aug 14];2020. http://doi.wiley.com/10.1002/14651858.CD003316.pub7

  19. Lee CD, Folsom AR, Blair SN. Physical activity and stroke risk: a Meta-analysis. Stroke. 2003;34:2475–81. https://doi.org/10.1161/01.STR.0000091843.02517.9D.

    Article  PubMed  Google Scholar 

  20. Hung SH, Ebaid D, Kramer S, Werden E, Baxter H, Campbell BC, et al. Pre-stroke physical activity and admission stroke severity: a systematic review. Int J Stroke. 2021;16:1009–18. https://doi.org/10.1177/1747493021995271.

    Article  PubMed  Google Scholar 

  21. Lee J-Y, Kwon S, Kim W-S, Hahn SJ, Park J, Paik N-J. Feasibility, reliability, and validity of using accelerometers to measure physical activities of patients with stroke during inpatient rehabilitation. Oyeyemi AL, editor. PLOS ONE. 2018;13:e0209607. https://doi.org/10.1371/journal.pone.0209607

  22. Field MJ, Gebruers N, Shanmuga Sundaram T, Nicholson S, Mead G. Physical activity after stroke: a systematic review and Meta-analysis. ISRN Stroke. 2013;2013:1–13. https://doi.org/10.1155/2013/464176.

    Article  Google Scholar 

  23. Fini NA, Holland AE, Keating J, Simek J, Bernhardt J. How physically active are people following stroke? Systematic review and quantitative synthesis. Phys Ther. 2017;97:707–17. https://doi.org/10.1093/ptj/pzx038.

    Article  PubMed  Google Scholar 

  24. n Der Ploeg HP, Hillsdon M. Is sedentary behaviour just physical inactivity by another name? Int J Behav Nutr Phys Act. 2017;14:142. https://doi.org/10.1186/s12966-017-0601-0.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Fini NA, Holland AE, Keating J, Simek J, Bernhardt J. How is physical activity monitored in people following stroke? Disabil Rehabil. 2015;37:1717–31. https://doi.org/10.3109/09638288.2014.978508

  26. Braakhuis HEM, Roelofs JMB, Berger MAM, Ribbers GM, Weerdesteyn V, Bussmann JBJ. Intensity of daily physical activity - a key component for improving physical capacity after minor stroke? Disabil Rehabil. 2022;44:3048–53. https://doi.org/10.1080/09638288.2020.1851781

  27. Gothe NP, Bourbeau K. Associations between physical activity intensities and physical function in stroke survivors. Am J Phys Med Rehabil. 2020;99:733–8. https://doi.org/10.1097/PHM.0000000000001410.

    Article  PubMed  Google Scholar 

  28. Veerbeek JM, Van Wegen E, Van Peppen R, Van Der Wees PJ, Hendriks E, Rietberg M et al. What Is the Evidence for Physical Therapy Poststroke? A Systematic Review and Meta-Analysis. Quinn TJ, editor. PLoS ONE. 2014;9:e87987. https://doi.org/10.1371/journal.pone.0087987

  29. English C, Bernhardt J, Crotty M, Esterman A, Segal L, Hillier S. Circuit Class Therapy or Seven-Day Week Therapy for Increasing Rehabilitation Intensity of Therapy after Stroke (CIRCIT): a Randomized Controlled Trial. Int J Stroke. 2015;10:594–602. https://doi.org/10.1111/ijs.12470.

    Article  PubMed  Google Scholar 

  30. Koopman A, Eken M, Bezeij T, Valent L, Houdijk H. Does clinical rehabilitation impose sufficient cardiorespiratory strain to improve aerobic fitness? J Rehabil Med. 2013;45:92–8. https://doi.org/10.2340/16501977-1072.

    Article  PubMed  Google Scholar 

  31. Sage M, Middleton LE, Tang A, Sibley KM, Brooks D, McIlroy W. Validity of rating of Perceived Exertion ranges in individuals in the Subacute Stage of Stroke Recovery. Top Stroke Rehabil. 2013;20:519–27. https://doi.org/10.1310/tsr2006-519.

    Article  PubMed  Google Scholar 

  32. Tudor-Locke CE, Myers AM. Challenges and opportunities for measuring physical activity in sedentary adults. Sports Med Auckl NZ. 2001;31:91–100. https://doi.org/10.2165/00007256-200131020-00002.

    Article  CAS  Google Scholar 

  33. Chen KY, Bassett DR. The technology of Accelerometry-based activity monitors: current and future. Med Sci Sports Exerc. 2005;37:S490–500. https://doi.org/10.1249/01.mss.0000185571.49104.82.

    Article  PubMed  Google Scholar 

  34. Yang C-C, Hsu Y-L. A review of Accelerometry-based wearable motion detectors for physical activity monitoring. Sensors. 2010;10:7772–88. https://doi.org/10.3390/s100807772.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Katzan I, Schuster A, Kinzy T, Physical Activity Monitoring Using a Fitbit Device in Ischemic Stroke Patients: Prospective Cohort Feasibility Study. JMIR MHealth UHealth. 2021; 9:e14494.https://doi.org/10.2196/14494.

  36. Goldsack JC, Coravos A, Bakker JP, Bent B, Dowling AV, Fitzer-Attas C, et al. Verification, analytical validation, and clinical validation (V3): the foundation of determining fit-for-purpose for Biometric Monitoring Technologies (BioMeTs). Npj Digit Med. 2020;3:55. https://doi.org/10.1038/s41746-020-0260-4.

  37. Bakker JP, Barge R, Cobb B, Cota C, Guo CC, Hartog B, et al. V3+: An extension to the V3 framework to ensure user-centricity and scalability of sensor-based digital health technologies [Internet]. 2024. Available from: https://datacc.dimesociety.org/resources/v3-an-extension-to-the-v3-framework-to-ensure-user-centricity-and-scalability-of-sensor-based-digital-health-technologies/

  38. Hart T, Dijkers MP, Whyte J, Turkstra LS, Zanca JM, Packel A, et al. A theory-driven system for the specification of Rehabilitation treatments. Arch Phys Med Rehabil. 2019;100:172–80. https://doi.org/10.1016/j.apmr.2018.09.109.

    Article  PubMed  Google Scholar 

  39. Mtaweh H, Tuira L, Floh AA, Parshuram CS. Indirect calorimetry: history, Technology, and application. Front Pediatr. 2018;6:257. https://doi.org/10.3389/fped.2018.00257.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Westerterp KR. Doubly labelled water assessment of energy expenditure: principle, practice, and promise. Eur J Appl Physiol. 2017;117:1277–85. https://doi.org/10.1007/s00421-017-3641-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kenny GP, Notley SR, Gagnon D. Direct calorimetry: a brief historical review of its use in the study of human metabolism and thermoregulation. Eur J Appl Physiol. 2017;117:1765–85. https://doi.org/10.1007/s00421-017-3670-5.

    Article  PubMed  Google Scholar 

  42. Delsoglio M, Achamrah N, Berger MM, Pichard C. Indirect calorimetry in clinical practice. J Clin Med. 2019;8:1387. https://doi.org/10.3390/jcm8091387.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chastin SFM, De Craemer M, De Cocker K, Powell L, Van Cauwenberg J, Dall P, et al. How does light-intensity physical activity associate with adult cardiometabolic health and mortality? Systematic review with meta-analysis of experimental and observational studies. Br J Sports Med. 2019;53:370–6. https://doi.org/10.1136/bjsports-2017-097563.

    Article  PubMed  Google Scholar 

  44. Pate RR. Physical Activity and Public Health: a recommendation from the Centers for Disease Control and Prevention and the American College of Sports Medicine. JAMA. 1995;273:402. https://doi.org/10.1001/jama.1995.03520290054029.

    Article  CAS  PubMed  Google Scholar 

  45. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Tudor-Locke C, et al. 2011 Compendium of Physical activities: a second update of codes and MET values. Med Sci Sports Exerc. 2011;43:1575–81. https://doi.org/10.1249/MSS.0b013e31821ece12.

    Article  PubMed  Google Scholar 

  46. Danielsson A, Willén C, Sunnerhagen KS. Measurement of Energy cost by the physiological cost index in walking after stroke. Arch Phys Med Rehabil. 2007;88:1298–303. https://doi.org/10.1016/j.apmr.2007.06.760.

    Article  PubMed  Google Scholar 

  47. Mendes MDA, Da Silva I, Ramires V, Reichert F, Martins R, Ferreira R et al. Metabolic equivalent of task (METs) thresholds as an indicator of physical activity intensity. Zagatto AM, editor. PLOS ONE. 2018;13:e0200701. https://doi.org/10.1371/journal.pone.0200701

  48. Fonte G, Schreiber C, Areno G, Masson X, Chantraine F, Schütz G, et al. Metabolic energy expenditure and accelerometer-determined physical activity levels in Post-stroke Hemiparetic patients. J Stroke Cerebrovasc Dis. 2022;31:106397. https://doi.org/10.1016/j.jstrokecerebrovasdis.2022.106397.

    Article  PubMed  Google Scholar 

  49. Billinger SA, Coughenour E, MacKay-Lyons MJ, Ivey FM. Reduced Cardiorespiratory Fitness after Stroke: Biological consequences and Exercise-Induced adaptations. Stroke Res Treat. 2012;2012:1–11. https://doi.org/10.1155/2012/959120.

    Article  Google Scholar 

  50. Addoh O, Edwards MK, Loprinzi PD. Predictive validity of a medical-related Cardiorespiratory Fitness Algorithm in Predicting Cardiovascular Disease– and all-cause mortality: implications for integration into clinical practice. Mayo Clin Proc. 2016;91:1320–1. https://doi.org/10.1016/j.mayocp.2016.06.008.

    Article  PubMed  Google Scholar 

  51. Kaminsky LA, Arena R, Ellingsen Ø, Harber MP, Myers J, Ozemek C, et al. Cardiorespiratory fitness and cardiovascular disease - the past, present, and future. Prog Cardiovasc Dis. 2019;62:86–93. https://doi.org/10.1016/j.pcad.2019.01.002.

    Article  PubMed  Google Scholar 

  52. Smith AC, Saunders DH, Mead G. Cardiorespiratory Fitness after Stroke: a systematic review. Int J Stroke. 2012;7:499–510. https://doi.org/10.1111/j.1747-4949.2012.00791.x.

    Article  PubMed  Google Scholar 

  53. Pollock ML, Gaesser GA, Butcher JD, Després J-P, Dishman RK, Franklin BA, et al. ACSM position stand: the recommended quantity and quality of Exercise for developing and maintaining cardiorespiratory and muscular fitness, and flexibility in healthy adults. Med Sci Sports Exerc. 1998;30:975–91. https://doi.org/10.1097/00005768-199806000-00032.

    Article  Google Scholar 

  54. Jacobs PL. National Strength & Conditioning Association (U.S.), editors. NSCA’s essentials of training special populations. Champaign, IL: Human Kinetics; 2017.

  55. Robin J, Harrison JE, Kaufman LD, Rudzicz F, Simpson W, Yancheva M. Evaluation of Speech-based Digital biomarkers: review and recommendations. Digit Biomark. 2020;4:99–108. https://doi.org/10.1159/000510820.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Simmatis L, Alavi Naeini S, Jafari D, Xie M, Kai Y, Tanchip C, Taati N, et al. Analytical Validation of a Webcam-Based Assessment of Speech Kinematics: Digital Biomarker evaluation following the V3 Framework. Digit Biomark. 2023;7–17. https://doi.org/10.1159/000529685.

  57. Tröger J, Baykara E, Zhao J, Ter Huurne D, Possemis N, Mallick E, et al. Validation of the remote automated ki:e Speech Biomarker for Cognition in mild cognitive impairment: Verification and Validation following DiME V3 Framework. Digit Biomark. 2022;6:107–16. https://doi.org/10.1159/000526471.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ellis R, Kelly P, Huang C, Pearlmutter A, Izmailova ES. Sensor Verification and Analytical Validation of Algorithms to measure gait and balance and Pronation/Supination in healthy volunteers. Sensors. 2022;22:6275. https://doi.org/10.3390/s22166275.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Arvidsson D, Fridolfsson J, Börjesson M, Andersen LB, Ekblom Ö, Dencker M, et al. Re-examination of accelerometer data processing and calibration for the assessment of physical activity intensity. Scand J Med Sci Sports. 2019;29:1442–52. https://doi.org/10.1111/sms.13470.

    Article  PubMed  Google Scholar 

  60. Migueles JH, Cadenas-Sanchez C, Ekelund U, Delisle Nyström C, Mora-Gonzalez J, Löf M, et al. Accelerometer Data Collection and Processing Criteria to assess physical activity and other outcomes: a systematic review and practical considerations. Sports Med. 2017;47:1821–45. https://doi.org/10.1007/s40279-017-0716-0.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Santos-Lozano A, Marín PJ, Torres-Luque G, Ruiz JR, Lucía A, Garatachea N. Technical variability of the GT3X accelerometer. Med Eng Phys. 2012;34:787–90. https://doi.org/10.1016/j.medengphy.2012.02.005.

    Article  PubMed  Google Scholar 

  62. Tryon WW, Williams R. Fully proportional actigraphy: a new instrument. Behav Res Methods Instrum Comput. 1996;28:392–403. https://doi.org/10.3758/BF03200519.

    Article  Google Scholar 

  63. Bouten CV, Koekkoek KT, Verduin M, Kodde R, Janssen JD. A triaxial accelerometer and portable data processing unit for the assessment of daily physical activity. IEEE Trans Biomed Eng. 1997;44:136–47. https://doi.org/10.1109/10.554760.

    Article  CAS  PubMed  Google Scholar 

  64. Freedson PS, Melanson E, Sirard J. Calibration of the Computer Science and Applications, Inc. accelerometer. Med Sci Sports Exerc. 1998;30:777–81. https://doi.org/10.1097/00005768-199805000-00021.

    Article  CAS  PubMed  Google Scholar 

  65. Khusainov R, Azzi D, Achumba IE, Bersch SD. Real-time human ambulation, activity, and physiological monitoring: taxonomy of issues, techniques, applications, challenges and limitations. Sensors. 2013;13:12852–902. https://doi.org/10.3390/s131012852.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pachi A, Ji T. Frequency and velocity of people walking. Struct Eng. 2005;83:36–40.

    Google Scholar 

  67. White JW, Finnegan OL, Tindall N, Nelakuditi S, Brown DE, Pate RR, et al. Comparison of raw accelerometry data from ActiGraph, Apple Watch, Garmin, and fitbit using a mechanical shaker table. PLoS ONE. 2024;19:e0286898. https://doi.org/10.1371/journal.pone.0286898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Büsching F, Kulau U, Gietzelt M, Wolf L. Comparison and validation of capacitive accelerometers for health care applications. Comput Methods Programs Biomed. 2012;106:79–88. https://doi.org/10.1016/j.cmpb.2011.10.009.

    Article  PubMed  Google Scholar 

  69. Joseph C, Strömbäck B, Hagströmer M, Conradsson D, Accelerometry. A feasible method to monitor physical activity during sub-acute rehabilitation of persons with stroke. J Rehabil Med. 2018;50:429–34. https://doi.org/10.2340/16501977-2326.

    Article  PubMed  Google Scholar 

  70. Strømmen AM, Christensen T, Jensen K. Quantitative measurement of physical activity in Acute ischemic stroke and transient ischemic attack. Stroke. 2014;45:3649–55. https://doi.org/10.1161/STROKEAHA.114.006496.

    Article  CAS  PubMed  Google Scholar 

  71. Gebruers N, Vanroy C, Truijen S, Engelborghs S, De Deyn PP. Monitoring of physical activity after stroke: a systematic review of accelerometry-based measures. Arch Phys Med Rehabil. 2010;91:288–97. https://doi.org/10.1016/j.apmr.2009.10.025.

    Article  PubMed  Google Scholar 

  72. Klassen TD, Semrau JA, Dukelow SP, Bayley MT, Hill MD, Eng JJ. Consumer-based physical activity monitor as a practical way to measure walking intensity during Inpatient Stroke Rehabilitation. Stroke. 2017;48:2614–7. https://doi.org/10.1161/STROKEAHA.117.018175.

    Article  PubMed  Google Scholar 

  73. Peters DM, O’Brien ES, Kamrud KE, Roberts SM, Rooney TA, Thibodeau KP, Utilization of wearable technology to assess gait and mobility post-stroke: a systematic review. J NeuroEngineering Rehabil.https://doi.org/10.1186/s12984-021-00863-x

  74. Maher C, Szeto K, Arnold J. The use of accelerometer-based wearable activity monitors in clinical settings: current practice, barriers, enablers, and future opportunities. BMC Health Serv Res. 2021;21:1064.https://doi.org/10.1186/s12913-021-07096-7

  75. Freedson P, Bowles HR, Troiano R, Haskell W. Assessment of physical activity using wearable monitors: recommendations for monitor calibration and use in the field. Med Sci Sports Exerc. 2012;44:S1–4. https://doi.org/10.1249/MSS.0b013e3182399b7e.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Evenson KR, Goto MM, Furberg RD. Systematic review of the validity and reliability of consumer-wearable activity trackers. Int J Behav Nutr Phys Act. 2015;12:159. https://doi.org/10.1186/s12966-015-0314-1.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Faria GS, Polese JC, Ribeiro-Samora GA, Scianni AA, Faria CDCM, Teixeira-Salmela LF. Validity of the accelerometer and smartphone application in estimating energy expenditure in individuals with chronic stroke. Braz J Phys Ther. 2019;23:236–43. https://doi.org/10.1016/j.bjpt.2018.08.003.

  78. Wu W-J, Yu H-B, Tai W-H, Zhang R, Hao W-Y. Validity of Actigraph for Measuring Energy expenditure in healthy adults: a systematic review and Meta-analysis. Sensors. 2023;23:8545. https://doi.org/10.3390/s23208545.

    Article  PubMed  PubMed Central  Google Scholar 

  79. de Souza Veras L. Calibration and validation of accelerometers: Establishing new equations for energy expenditure and ground reaction force prediction [Internet]. ProQuest Dissertations & Theses Global; 2019 [cited 2024 Aug 21]. https://www.proquest.com/dissertations-theses/calibration-validation-accelerometers/docview/3085954251/se-2

  80. Lyden K, Kozey SL, Staudenmeyer JW, Freedson PS. A comprehensive evaluation of commonly used accelerometer energy expenditure and MET prediction equations. Eur J Appl Physiol. 2011;111:187–201. https://doi.org/10.1007/s00421-010-1639-8.

    Article  PubMed  Google Scholar 

  81. Crouter SE, Clowers KG, Bassett DR. A novel method for using accelerometer data to predict energy expenditure. J Appl Physiol Bethesda Md 1985. 2006;100:1324–31. https://doi.org/10.1152/japplphysiol.00818.2005.

    Article  Google Scholar 

  82. Daniel CR, Battistella LR. Validation of accelerometry for measuring energy expenditure: a systematic review. CEP. 2014;5716:150.

    Google Scholar 

  83. Bai J, Di C, Xiao L, Evenson KR, LaCroix AZ, Crainiceanu CM, et al. An activity Index for Raw Accelerometry Data and its comparison with other Activity Metrics. PLoS ONE. 2016;11:e0160644. https://doi.org/10.1371/journal.pone.0160644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pfeiffer KA, Clevenger KA, Kaplan A, Van Camp CA, Strath SJ, Montoye AHK. Accessibility and use of novel methods for predicting physical activity and energy expenditure using accelerometry: a scoping review. Physiol Meas. 2022;43. https://doi.org/10.1088/1361-6579/ac89ca.

  85. Sasaki JE, Hickey A, Mavilia M, Tedesco J, John D, Kozey Keadle S, et al. Validation of the Fitbit wireless activity tracker for prediction of energy expenditure. J Phys Act Health. 2015;12:149–54. https://doi.org/10.1123/jpah.2012-0495.

    Article  PubMed  Google Scholar 

  86. for Drug HSFC, for, Biologics HSFC, for, Devices HSFC, Health R. Guidance for industry: patient-reported outcome measures: use in medical product development to support labeling claims: draft guidance. Health Qual Life Outcomes. 2006;4:79.

  87. Parker FR. Department of Health and Human Services, US Food and Drug Administration: Authority and responsibility. FDA Adm Enforc Man. CRC; 2005. pp. 21–60.

  88. Herrington WG, Goldsack JC, Landray MJ. Increasing the use of mobile technology–derived endpoints in clinical trials. Clin Trials. 2018;15:313–5. https://doi.org/10.1177/1740774518755393.

  89. Van Stan JH, Whyte J, Duffy JR, Barkmeier-Kraemer JM, Doyle PB, Gherson S, et al. Rehabilitation Treatment Specification System: methodology to identify and describe unique targets and ingredients. Arch Phys Med Rehabil. 2021;102:521–31. https://doi.org/10.1016/j.apmr.2020.09.383.

    Article  PubMed  Google Scholar 

  90. Lynch EA, Jones TM, Simpson DB, Fini NA, Kuys SS, Borschmann K et al. Activity monitors for increasing physical activity in adult stroke survivors. Cochrane Stroke Group, editor. Cochrane Database Syst Rev [Internet]. 2018 [cited 2024 Aug 22]; https://doi.org/10.1002/14651858.CD012543.pub2

  91. Mansfield A, Wong JS, Bryce J, Brunton K, Inness EL, Knorr S, et al. Use of Accelerometer-based feedback of walking activity for appraising Progress with walking-related goals in Inpatient Stroke Rehabilitation: a Randomized Controlled Trial. Neurorehabil Neural Repair. 2015;29:847–57. https://doi.org/10.1177/1545968314567968.

    Article  PubMed  Google Scholar 

  92. Mattlage AE, Redlin SA, Rippee MA, Abraham MG, Rymer MM, Billinger SA. Use of accelerometers to examine sedentary time on an Acute Stroke Unit. J Neurol Phys Ther JNPT. 2015;39:166–71. https://doi.org/10.1097/NPT.0000000000000092.

    Article  PubMed  Google Scholar 

  93. Usui H, Nishida Y. Relationship between physical activity and the very low-frequency component of Heart Rate Variability after Stroke. J Stroke Cerebrovasc Dis. 2015;24:840–3. https://doi.org/10.1016/j.jstrokecerebrovasdis.2014.11.026.

    Article  PubMed  Google Scholar 

  94. Saripalle R. Extending HL7 RIM Model to Capture Physical Activity Data. 2017. pp. 254–9.

  95. Whitsel LP, Bantham A. It’s time to move: integrating Physical Activity Assessment, prescription, and Referral through Policy and systems Change. J Healthy Eat Act Living. 2023;3:1–6.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The authors declare that no funding was received for the preparation of this review paper. The authors also declare that there are no conflicts of interest related to the content of this manuscript. The content is solely the responsibility of the authors and does not necessarily represent the official views of any affiliated institutions.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [OA]; Methodology: [OA, CB and DR]; Analyses: [OA, CB and DR]; Writing - original draft preparation: [OA]; Writing - review and editing: [OA, CB and DR]

Corresponding author

Correspondence to Ovuokerie Addoh.

Ethics declarations

Human and Animal Rights

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Addoh, O., Bombardier, C.H. & Rosenberg, D. Optimizing Stroke Rehabilitation: An Evaluation of Accelerometry-Based Physical Activity Intensity Measurement. Curr Phys Med Rehabil Rep 13, 1 (2025). https://doi.org/10.1007/s40141-024-00474-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40141-024-00474-2

Keywords

Navigation