[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

New improvements of some classical inequalities

  • Published:
Afrika Matematika Aims and scope Submit manuscript

Abstract

In this paper, we establish an inequality for scalars, which we then apply to refine some classical inequalities for inner product and numerical raduis. For example, we establish that for any \(\mathcal {E}\in \mathcal {B}(\mathcal {H}),\) \(u,v\in \mathcal {H},\) and \(0\le \theta \le 1\),

$$\begin{aligned} |\langle \mathcal {E} u,v\rangle |^2&\le \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{\left\langle |\mathcal {E}|^{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle }\right) \\ &\le \left\langle |\mathcal {E}|^{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle . \end{aligned}$$

Moreover, we have \(\left( \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{\left\langle |\mathcal {E}|^{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle }\right) \right) _{n \geqslant 0}\) is an increasing sequence satisfying

$$\begin{aligned} \lim \limits _{n \rightarrow +\infty } \mathcal {U}_{(n,\xi )}\left( \eta ,|\langle \mathcal {E}u,v\rangle |,\sqrt{\left\langle |\mathcal {E}|^{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle }\right) = \left\langle |\mathcal {E}|^{2 \theta } u,u\right\rangle \left\langle \left| \mathcal {E}^*\right| ^{2(1-\theta )} v, v\right\rangle , \end{aligned}$$

which presents a novel refinement of the well-known mixed Schwartz inequality. Our results extend and refine well-established inequalities found in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

This statement does not apply.

References

  1. Al-Dolat, M., Jaradat, I.: A refinement of the Cauchy–Schwarz inequality accompanied by new numerical radius upper bounds. Filomat 37(3), 971–977 (2023)

    Article  MathSciNet  Google Scholar 

  2. Alomari, M.W.: On Cauchy–Schwarz type inequalities and applications to numerical radius inequalities. Ricerche Mat. (2022). https://doi.org/10.1007/s11587-022-00689-2

    Article  Google Scholar 

  3. Bhatia, R.: Positive Definite Matrices. Princeton Univ. Press, Princeton (2007)

    Google Scholar 

  4. Alomari, M.W., Bakherad, M., Hajmohamadi, M., Chesneau, C., Leiva, V., Martin-Barreiro, C.: Improvement of Furuta’s inequality with applications to numerical radius. Mathematics 11, 36 (2023). https://doi.org/10.3390/math11010036

    Article  Google Scholar 

  5. Buzano, M.L.: Generalizzazione della diseguaglianza di Cauchy-Schwarz, (Italian), Rend. Sem. Mat. Univ. e Politech. Torino 31(1971/73), 405–409 (1974)

    Google Scholar 

  6. Dragomir, S.S.: Power inequalities for the numerical radius of a product of two operators in Hilbert spaces. Sarajevo J. Math. 5, 269–278 (2009)

    Article  MathSciNet  Google Scholar 

  7. El-Haddad, M., Kittaneh, F.: Numerical radius inequalities for Hilbert space operators II. Studia Math. 182(2), 133–140 (2007)

    Article  MathSciNet  Google Scholar 

  8. Furuta, T.: An extension of the Heinz-Kato theorem. Proc. Am. Math. Soc. 120, 785–787 (1994)

    Article  MathSciNet  Google Scholar 

  9. Gao, M., Wu, D., Chen, A.: Generalized upper bounds estimation of numerical radius and norm for the sum of operators. Mediterr. J. Math. 20, 210 (2023). https://doi.org/10.1007/s00009-023-02405-21660-5446/23/040001-15

    Article  MathSciNet  Google Scholar 

  10. Hamadneh, T., Alomari, M.W., Al-Shbeil, I., Alaqad, H., Hatamleh, R., Heilat, A.S., Al-Husban, A.: Refinements of the Euclidean operator radius and Davis–Wielandt radius-type inequalities. Symmetry 15, 1061 (2023). https://doi.org/10.3390/sym15051061

    Article  Google Scholar 

  11. Ighachane, M.A., Kittaneh, F., Taki, Z.: New refinements of some classical inequalities via Young’s inequality. Adv. Oper. Theory 9, 49 (2024). https://doi.org/10.1007/s43036-024-00347-4

    Article  MathSciNet  Google Scholar 

  12. Kato, T.: Notes on some inequalities for linear operators. Math. Ann. 125, 208–212 (1952)

    Article  MathSciNet  Google Scholar 

  13. Kittaneh, F.: Notes on some inequalities for Hilbert Space operators. Publ. Res. Inst. Math. Sci. 24(2), 283–293 (1988)

    Article  MathSciNet  Google Scholar 

  14. Kittaneh, F.: A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix. Studia Math. 158, 11–17 (2003)

    Article  MathSciNet  Google Scholar 

  15. Kittaneh, F.: Numerical radius inequalities for Hilbert space operators. ibid 168, 73–80 (2005)

    MathSciNet  Google Scholar 

  16. Kittaneh, F., Moradi, H.R.: Cauchy–Schwarz type inequalities and applications to numerical radius inequalities. Math. Inequal. Appl. 23(3), 1117–1125 (2020)

    MathSciNet  Google Scholar 

  17. McCarthy, C.A.: \( C_{p}\), Israel J. Math, 5 , 249–271 (1967)

  18. Moslehian, M.S., Khosravi, M., Drnovśek, R.: A commutator approach to Buzano inequality. Filomat 26(4), 827–832 (2012)

    Article  MathSciNet  Google Scholar 

  19. Moslehian, M.S., Sattari, M., Shebrawi, K.: Extension of Euclidean operator radius inequalities. Math. Scand. 120, 129–144 (2017)

    Article  MathSciNet  Google Scholar 

  20. Qiao, H., Hai, G., Chen, A.: Improvements of A-numerical radius for semi-Hilbertian space operators. J. Math. Inequal. 18(2), 791–810 (2024)

    Article  MathSciNet  Google Scholar 

  21. Sheikhhosseini, A., Moslehian, M.S., Shebrawi, K.: Inequalities for generalized Euclidean operator radius via Young’s inequality. J. Math. Anal. Appl. 445, 1516–1529 (2017)

    Article  MathSciNet  Google Scholar 

  22. Popescu, G.: Unitary invariants in multivariable operator theory. Mem. Am. Math. Soc. 200, 941 (2009)

    MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the referees for their useful comments.

Funding

The authors did not receive any financial support for this work.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally to this work.

Corresponding author

Correspondence to Fuad Kittaneh.

Ethics declarations

Conflict of interest

The authors declare no Conflict of interest.

Ethical approval

This statement is not applicable here.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gourty, A., Ighachane, M.A. & Kittaneh, F. New improvements of some classical inequalities. Afr. Mat. 35, 76 (2024). https://doi.org/10.1007/s13370-024-01218-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13370-024-01218-0

Keywords

Mathematics Subject Classification

Navigation