[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Flow and Mixing Pattern of Transverse Turbulent Jet in Venturi-Jet Mixer

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

In this paper, computational simulations of three dimensional flow mixing process of turbulent jet with crossflow in a venturi-jet mixer using a standard Computational Fluid Dynamics solver is presented. In addition to the prediction of velocity and pressure fields, the turbulent intensity, concentration decay and mixture parameter using tracer (suction fluid) spatial distributions in the downstream distances from the jet injection point are obtained numerically to deduce certain design information related to the orientation and position of the jet in the mixer. The jet injection angle (θ o ) is varied from 45° to 135° and Reynolds number (Re) is set in the range of 32,000–51,000. A jet centreline trajectory is traced based on maximum concentration values of tracer along the flow field for the theoretical cases and compared with previously published trajectory correlation of the author. A reasonable agreement was indicated between both traces. Also a comparison of numerical results and measured data for flow mixing process in the venturi-jet mixer is made to check the results of numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gray, J.B.: Mixing: Theory and Practice. Academic Press, New York (1986)

  2. Sroka L.M., Forney L.J.: Fluid mixing with a pipeline tee: theory and experiment. AIChE J. 35(3), 406–414 (1989)

    Article  Google Scholar 

  3. Monclova L.A., Forney L.J.: Numerical simulation of a pipeline tee mixer. Ind. Eng. Chem. Res. 34, 1488–1493 (1995)

    Article  Google Scholar 

  4. Maruyama T., Mizushina T., Watanabe F.: Turbulent mixing of two fluid streams at an oblique branch. Int. Chem. Eng. 22(2), 287–294 (1982)

    Google Scholar 

  5. Sundararaj, S.; Selladura, V.: Numerical and experimental study on jet trajectories and mixing behavior of venturi-jet mixer. ASME J. Fluids Eng. 132, 101104 (2010)

    Google Scholar 

  6. Roth, K.: Application of a three-dimensional navier-stokes model for a subsonic jet in a crossflow. Ph.D. thesis, Florida University (1988)

  7. Krothapalli A., Baganoff D., Karamcheti K.: On the mixing of a rectangular jet. J. Fluid Mech. 107, 201–220 (1981)

    Article  Google Scholar 

  8. Raman G., Taghavi R.: Resonant interaction of a linear array of supersonic rectangular jets: an experimental study. J. Fluid Mech. 309, 93–111 (1996)

    Article  Google Scholar 

  9. Smith S.H., Mungal M.G.: Mixing, structure and scaling of the jet in crossflow. J. Fluid Mech. 357, 83–122 (1998)

    Article  Google Scholar 

  10. Demuren, A.O.: Modeling turbulent jets in cross flow. In: Cheremisinoff, N.P. (ed.) Encyclopedia of Fluid Mechanics, vol. 2 (chap. 17). Gulf Publishing Company, Houston (1986)

  11. Sherif S.A., Pletcher R.H.: Jet-wake thermal characteristics of heated turbulent jets in crossflow. J. Thermophys. 5, 181–191 (1991)

    Article  Google Scholar 

  12. Said N.M., Mhiri H., Palec G.L., Bournot P.: Experimental and numerical analysis of pollutant dispersion from a chimney. Atmos. Environ. 39, 1727–1738 (2005)

    Google Scholar 

  13. Boersma B.J., Brethouwer G., Nieuwstadt F.T.M.: A numerical investigation on the effect of the inflow conditions on the self-similar region of a round jet. Phys. Fluids 10(4), 899–909 (1998)

    Article  Google Scholar 

  14. Wang X., Feng Z., Forney L.J.: Computational simulation of turbulent mixing with mass transfer. Comput. Struct. 70, 445–465 (1999)

    Google Scholar 

  15. Shanley A.: Pushing the limits of CFD. Chem. Eng. 103, 66–71 (1996)

    Google Scholar 

  16. Launder B.E., Spalding D.B.: The numerical prediction of turbulent flows. Comput. Methods Appl. Mech. Engg. 3, 269–289 (1974)

    Article  MATH  Google Scholar 

  17. Patankar S.V., Basu D.K., Alpay S.A.: Prediction of three-dimensional velocity field of a detected turbulent jet. ASME J. Fluids Eng. 99, 758–762 (1977)

    Article  Google Scholar 

  18. Catalano, G.D.; Chang, K.S.; Mathis, J.A.: Investigation of turbulent jets impingement in a confined crossflow. AIAA J. 27, 1530–1535 (1989)

    Google Scholar 

  19. Hwang, R.R.; Chiang, T.P.: Numerical simulation of vertical forced plume in a crossflow of stably stratified fluid. ASME J. Fluids Eng. 117, 696–705 (1995)

    Google Scholar 

  20. He, G.; Guo, Y.; Hsu, A.T.: The effect of Schmidt number on turbulent scalar mixing in a jet-in-crossflow. Int. J. Heat Mass Transf. 42, 3727–3738 (1999)

    Google Scholar 

  21. Wilcox, D.C.: Turbulence modeling for CFD, 2nd edn. DCW Industries, Inc., La Canada (1994)

  22. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comp. Phys. 2(1), 12–26 (1967)

    Google Scholar 

  23. Jones, S.C.; Sotiropoulos, F.; Amirtharajah, A.: Numerical modelling of helical static mixers for water treatment. J. Environ. Eng. 128(5), 431–440 (2002)

    Google Scholar 

  24. Li, S.; Murugappan, S.; Gutmark, E.; Vallet, L.: Influence of a synthetic jet excitation on the development of a turbulent mixing layer. In: 44th AIAA Aerospace Sciences Meeting and Exhibit—AIAA 2006-307, Reno, Nevada (2006)

  25. Pathak, M.; Dewan, A.; Dass, A.K.: Computational prediction of a slightly heated turbulent rectangular jet discharged into a narrow channel crossflow using two different turbulence models. Int. J. Heat Mass Transf. 49, 3914–3928 (2006)

    Google Scholar 

  26. Liu, S.: Laminar mixing of shear thinning fluids in a SMX static mixer. Chem. Eng. Sci. 61(6), 1753–1759 (2006)

    Google Scholar 

  27. Fourcade, E.; Wadley, R.; Hoefsloot, H.C.J.: CFD calculation of laminar striation thinning in static mixer reactors. Chem. Eng. Sci. 56(23), 6729–6741 (2001)

    Google Scholar 

  28. Kok, J.B.W.; Vander Wall, S.: Mixing in T-junctions. Appl. Math. Model. 20, 232–243 (1996)

    Google Scholar 

  29. Chornyi A.D., Kornev N.V., Hassel E.: Simulation of the turbulent mixing of a passive impurity in a jet mixer. J. Eng. Phys. Thermophys. 81(4), 692–707 (2008)

    Article  Google Scholar 

  30. Smith, S.H.: The scalar concentration field of the axi-symmetric jet in crossflow. Ph.D. thesis, Stanford University (1996)

  31. Hasselbrink, E.F.: Transverse jets and jets flames: structure, scaling, and effects of heat release. Ph.D. thesis, Stanford University (1999)

  32. Pathak M., Dewan A., Dass A.K.: Effect of streamline curvature on flow field of a turbulent plane jet in cross-flow. Mech. Res. Commun. 34, 241–248 (2007)

    Article  MATH  Google Scholar 

  33. Abramovich, G.N.: The Theory of Turbulent Jets. The Massachusetts Institute of Technology, Cambridge (1963)

  34. Beer, J.M.; Chigier, N.A.: Combustion Aerodynamics. Applied Science Publishers Ltd., London (1974)

  35. Schetz, J.A.: Injection and mixing in turbulent flow. In: Progress in Astronautics and Aeronautics, AIAA, vol. 68 (1980)

  36. Hu, H.; Kobayashi, T.; Saga, T.; Taniguchi, N.; Liu, H.; Wu, S.: Research on the rectangular lobed exhaust ejector/mixer systems. Trans. Jpn. Sac. Aero. Space Sci. 41(34), 187–194 (1999)

    Google Scholar 

  37. FLUENT 6.2, User’s Guide. FLUENT Inc., Lebanon (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sundararaj.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sundararaj, S., Selladurai, V. Flow and Mixing Pattern of Transverse Turbulent Jet in Venturi-Jet Mixer. Arab J Sci Eng 38, 3563–3573 (2013). https://doi.org/10.1007/s13369-013-0643-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0643-9

Keywords

Navigation