[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin–nicotinamide-induced experimental diabetic rats

  • Original Paper
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

In the present study, the putative antihyperglycemic and antioxidant effects of a flavanone, naringenin, were evaluated in comparison with those of glyclazide, a standard drug for therapy of diabetes mellitus. Diabetes was induced experimentally in 12-h-fasted rats by intraperitoneal injections of first streptozotocin (50 mg/kg b.w.) and then of nicotinamide (110 mg/kg b.w.) after a 15-min interval. Untreated diabetic rats revealed the following in comparison with normal rats: significantly higher mean levels of blood glucose and glycosylated hemoglobin, significantly lower mean levels of serum insulin, significantly lower mean activities of pancreatic antioxidant enzymes (superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase), significantly lower mean levels of plasma non-enzymatic antioxidants (reduced glutathione, vitamin C , vitamin E), significantly elevated mean levels of pancreatic malondialdehyde (MDA) and significantly elevated mean activities of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH). Following oral administration of naringenin (50 mg/kg b.w./day) to diabetic rats for 21 days, the following observations were made in comparison with untreated diabetic rats: significantly lower mean levels of fasting blood glucose and glycosylated hemoglobin, significantly elevated serum insulin levels, significantly higher mean activities of pancreatic enzymatic antioxidants, significantly higher mean levels of plasma non-enzymatic antioxidants, lower mean pancreatic tissue levels of MDA and lower mean activities of ALT, AST, ALP and LDH in serum. The values obtained in the naringenin-treated animals approximated those observed in glyclazide-treated animals. Histopathological studies appeared to suggest a protective effect of naringenin on the pancreatic tissue in diabetic rats. These results suggest that naringenin exhibits antihyperglycemic and antioxidant effects in experimental diabetic rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. al-Shamaony L, al-Khazraji SM, Twaij HA (1994) Hypoglycaemic effect of Artemisia herba alba. II. Effect of a valuable extract on some blood parameters in diabetic animals. J Ethnopharmacol 43:167–171

    Article  PubMed  CAS  Google Scholar 

  2. Ardestani A, Yazdanparast R, Jamshidi S (2008) Therapeutic effects of Teucrium polium extract on oxidative stress in pancreas of streptozotocin-induced diabetic rats. J Med Food 11:525–532

    Article  PubMed  CAS  Google Scholar 

  3. Badary OA, Abdel-Maksoud S, Ahmed WA, Owieda GH (2005) Naringenin attenuates cisplatin nephrotoxicity in rats. Life Sci 76:2125–2135

    Article  PubMed  CAS  Google Scholar 

  4. Bagri P, Ali M, Aeri V, Bhowmik M, Sultana S (2009) Antidiabetic effect of Punica granatum flowers: effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Food Chem Toxicol 47:50–54

    Article  PubMed  CAS  Google Scholar 

  5. Baumann J, Wurm G, Fv B (1980) Prostaglandin synthetase inhibition by flavonoids and phenolic compounds in relation to their O2—scavenging properties. Arch Pharm (Weinheim) 313:330–337

    Article  CAS  Google Scholar 

  6. Bekris LM, Shephard C, Peterson M, Hoehna J, Van Yserloo B et al (2005) Glutathione-s-transferase M1 and T1 polymorphisms and associations with type 1 diabetes age-at-onset. Autoimmunity 38:567–575

    Article  PubMed  CAS  Google Scholar 

  7. Benavente-García O, Castillo J (2008) Update on uses and properties of citrus flavonoids: new findings in anticancer, cardiovascular, and anti-inflammatory activity. J Agric Food Chem 56:6185–6205

    Article  PubMed  Google Scholar 

  8. Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  9. Burton GW, Cheng SC, Webb A, Ingold KU (1986) Vitamin E in young and old human red blood cells. Biochim Biophys Acta 860:84–90

    Article  PubMed  CAS  Google Scholar 

  10. Ceriello A (2000) Oxidative stress and glycemic regulation. Metabolism 49:27–29

    Article  PubMed  CAS  Google Scholar 

  11. Chance B, Greenstein DS, Roughton FJW (1952) The mechanism of catalase action. I. Steady-state analysis. Arch Biochem Biophys 37:301–321

    Article  PubMed  CAS  Google Scholar 

  12. Coskun O, Kanter M, Korkmaz A, Oter S (2005) Quercetin, a flavonoid antioxidant, prevents and protects streptozotocin-induced oxidative stress and β-cell damage in rat pancreas. Pharmacol Res 51:117–123

    Article  PubMed  CAS  Google Scholar 

  13. Desai ID (1984) Vitamin E analysis methods for animal tissues. Methods Enzymol 105:138–147

    Article  PubMed  CAS  Google Scholar 

  14. Drury RAD, Wallington EA (1980) Carleton's histological technique. Oxford University Press, New York

    Google Scholar 

  15. Du G, Jin L, Han X, Song Z, Zhang H et al (2009) Naringenin: a potential immunomodulator for inhibiting lung fibrosis and metastasis. Cancer Res 69:3205–3212

    Article  PubMed  CAS  Google Scholar 

  16. Gorogawa S-i, Kajimoto Y, Umayahara Y, Kaneto H, Watada H et al (2002) Probucol preserves pancreatic β-cell function through reduction of oxidative stress in type 2 diabetes. Diabetes Res Clin Pract 57:1–10

    Article  PubMed  CAS  Google Scholar 

  17. Gregus Z, Fekete T, Halaszi E, Klaassen CD (1996) Lipoic acid impairs glycine conjugation of benzoic acid and renal excretion of benzoylglycine. Drug Metab Dispos 24:682–688

    PubMed  CAS  Google Scholar 

  18. Habig WH, Jakoby WB (1981) Assays for differentiation of glutathione S-transferases. Methods Enzymol 77:398–405

    Article  PubMed  CAS  Google Scholar 

  19. Halliwell B (2000) Lipid peroxidation, antioxidants and cardiovascular disease: how should we move forward? Cardiovasc Res 47:410–418

    Article  PubMed  CAS  Google Scholar 

  20. Halliwell B, Gutteridge JM, Cross CE (1992) Free radicals, antioxidants, and human disease: where are we now? J Lab Clin Med 119:598–620

    PubMed  CAS  Google Scholar 

  21. Jin L, Xue HY, Jin LJ, Li SY, Xu YP (2008) Antioxidant and pancreas-protective effect of aucubin on rats with streptozotocin-induced diabetes. Eur J Pharmacol 582:162–167

    Article  PubMed  CAS  Google Scholar 

  22. Kajimoto Y, Kaneto H (2004) Role of oxidative stress in pancreatic beta-cell dysfunction. Ann N Y Acad Sci 1011:168–176

    Article  PubMed  CAS  Google Scholar 

  23. Kaleem MAM, Ahmed QU, Bano B (2006) Antidiabetic and antioxidant activity of Annona squamosa extract in streptozotocin-induced diabetic rats. Singapore Med J 47:670–675

    PubMed  CAS  Google Scholar 

  24. Kamalakkannan N, Prince PSM (2006) Antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats. Basic Clin Pharmacol Toxicol 98:97–103

    Article  PubMed  CAS  Google Scholar 

  25. Kameswara Rao B, Appa Rao C (2001) Hypoglycemic and antihyperglycemic activity of Syzygium alternifolium (Wt.) Walp. seed extracts in normal and diabetic rats. Phytomedicine 8:88–93

    Article  Google Scholar 

  26. Kaneto H, Kajimoto Y, Miyagawa J, Matsuoka T, Fujitani Y et al (1999) Beneficial effects of antioxidants in diabetes: possible protection of pancreatic beta-cells against glucose toxicity. Diabetes 48:2398–2406

    Article  PubMed  CAS  Google Scholar 

  27. Kannappan S, Anuradha CV (2010) Naringenin enhances insulin-stimulated tyrosine phosphorylation and improves the cellular actions of insulin in a dietary model of metabolic syndrome. Eur J Nutr 49:101–109

    Article  PubMed  CAS  Google Scholar 

  28. Kinalski M, Sledziewski A, Telejko B, Zarzycki W, Kinalska I (2000) Lipid peroxidation and scavenging enzyme activity in streptozotocin-induced diabetes. Acta Diabetol 37:179–183

    Article  PubMed  CAS  Google Scholar 

  29. King J (1965) The dehydrogenases or oxidoreductases-lactate dehydrogenase; Van D, editor. Nostrand Company Limited, London, pp 91–208

    Google Scholar 

  30. King J (1965) The transferases-alanine and aspartate transaminases; Van D, editor. Nostrand Company Limited, London, pp 121–138

    Google Scholar 

  31. Leclercq IA, Da Silva MA, Schroyen B, Van Hul N, Geerts A (2007) Insulin resistance in hepatocytes and sinusoidal liver cells: mechanisms and consequences. J Hepatol 47:142–156

    Article  PubMed  CAS  Google Scholar 

  32. LeDoux SP, Hall CR, Forbes PM, Patton NJ, Wilson GL (1988) Mechanisms of nicotinamide and thymidine protection from alloxan and streptozocin toxicity. Diabetes 37:1015–1019

    Article  PubMed  CAS  Google Scholar 

  33. Liu Z, Li J, Zeng Z, Liu M, Wang M (2008) The antidiabetic effects of cysteinyl metformin, a newly synthesized agent, in alloxan- and streptozocin-induced diabetic rats. Chem Biol Interact 173:68–75

    Article  PubMed  CAS  Google Scholar 

  34. Maritim AC, Sanders RA, Watkins JB (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol 17:24–38

    Article  PubMed  CAS  Google Scholar 

  35. Marklund S, Marklund G (1974) Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem 47:469–474

    Article  PubMed  CAS  Google Scholar 

  36. Masiello P, Broca C, Gross R, Roye M, Manteghetti M et al (1998) Experimental NIDDM: development of a new model in adult rats administered streptozotocin and nicotinamide. Diabetes 47:224–229

    Article  PubMed  CAS  Google Scholar 

  37. Mates JM, Sanchez-Jimenez F (1999) Antioxidant enzymes and their implications in pathophysiologic processes. Front Biosci 4:D339–D345

    Article  PubMed  CAS  Google Scholar 

  38. McCord JM (1979) Superoxide dismutase; Tattazzi M, Scandalios, JG, Whitt, GS editor. New York: Alan R.Liss Inc.

  39. McLennan SV, Heffernan S, Wright L, Rae C, Fisher E et al (1991) Changes in hepatic glutathione metabolism in diabetes. Diabetes 40:344–348

    Article  PubMed  CAS  Google Scholar 

  40. Moron MS, Depierre JW, Mannervik B (1979) Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta 582:67–78

    Article  PubMed  CAS  Google Scholar 

  41. Mullarkey CJ, Edelstein D, Brownlee M (1990) Free radical generation by early glycation products: a mechanism for accelerated atherogenesis in diabetes. Biochem Biophys Res Commun 173:932–939

    Article  PubMed  CAS  Google Scholar 

  42. Mulvihill EE, Allister EM, Sutherland BG, Telford DE, Sawyez CG et al (2009) Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes 58:2198–2210

    Article  PubMed  CAS  Google Scholar 

  43. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  PubMed  CAS  Google Scholar 

  44. Omaye ST, Turnbull JD, Sauberlich HE (1979) Selected methods for the determination of ascorbic acid in animal cells, tissues, and fluids. Methods Enzymol 62:3–11

    Article  PubMed  CAS  Google Scholar 

  45. Ortiz-Andrade RR, Sanchez-Salgado JC, Navarrete-Vazquez G, Webster SP, Binnie M et al (2008) Antidiabetic and toxicological evaluations of naringenin in normoglycaemic and NIDDM rat models and its implications on extra-pancreatic glucose regulation. Diabetes Obes Metab 10:1097–1104

    Article  PubMed  CAS  Google Scholar 

  46. Palsamy P, Subramanian S (2008) Resveratrol, a natural phytoalexin, normalizes hyperglycemia in streptozotocin–nicotinamide induced experimental diabetic rats. Biomedicine & Pharmacotherapy 62: 598-605.

    Google Scholar 

  47. Palsamy P, Subramanian S (2010) Ameliorative potential of resveratrol on proinflammatory cytokines, hyperglycemia mediated oxidative stress, and pancreatic beta-cell dysfunction in streptozotocin–nicotinamide-induced diabetic rats. J Cell Physiol 224:423–432

    Article  PubMed  CAS  Google Scholar 

  48. Paolisso G, D'Amore A, Di Maro G, Galzerano D, Tesauro P et al (1993) Evidence for a relationship between free radicals and insulin action in the elderly. Metabolism 42:659–663

    Article  PubMed  CAS  Google Scholar 

  49. Pari L, Karthikesan K, Menon V (2010) Comparative and combined effect of chlorogenic acid and tetrahydrocurcumin on antioxidant disparities in chemical induced experimental diabetes. Mol Cell Biochem 341:109–117

    Article  PubMed  CAS  Google Scholar 

  50. Park JH, Jin CY, Lee BK, Kim GY, Choi YH et al (2008) Naringenin induces apoptosis through downregulation of Akt and caspase-3 activation in human leukemia THP-1 cells. Food Chem Toxicol 46:3684–3690

    Article  PubMed  CAS  Google Scholar 

  51. Punithavathi VR, Prince PSM, Kumar R, Selvakumari J (2011) Antihyperglycaemic, antilipid peroxidative and antioxidant effects of gallic acid on streptozotocin induced diabetic Wistar rats. Eur J Pharmacol 650:465–471

    Article  PubMed  CAS  Google Scholar 

  52. Rakieten N, Rakieten ML, Nadkarni MR (1963) Studies on the diabetogenic action of streptozotocin (NSC-37917). Cancer Chemother Rep 29:91–98

    Google Scholar 

  53. Ramesh B, Saravanan R, Pugalendi KV (2005) Influence of sesame oil on blood glucose, lipid peroxidation, and antioxidant status in streptozotocin diabetic rats. J Med Food 8:377–381

    Article  PubMed  CAS  Google Scholar 

  54. Ravi K, Ramachandran B, Subramanian S (2004) Protective effect of Eugenia jambolana seed kernel on tissue antioxidants in streptozotocin-induced diabetic rats. Biol Pharm Bull 27:1212–1217

    Article  PubMed  CAS  Google Scholar 

  55. Renugadevi J, Prabu SM (2009) Naringenin protects against cadmium-induced oxidative renal dysfunction in rats. Toxicology 256:128–134

    Article  PubMed  CAS  Google Scholar 

  56. Rotruck JT, Pope AL, Ganther HE, Swanson AB, Hafeman DG et al (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science 179:588–590

    Article  PubMed  CAS  Google Scholar 

  57. Saravanan G, Ponmurugan P (2010) Beneficial effect of S-allylcysteine (SAC) on blood glucose and pancreatic antioxidant system in streptozotocin diabetic rats. Plant Foods Hum Nutr 65:374–378

    Article  PubMed  CAS  Google Scholar 

  58. Shi Y, Dai J, Liu H, Li RR, Sun PL et al (2009) Naringenin inhibits allergen-induced airway inflammation and airway responsiveness and inhibits NF-kappaB activity in a murine model of asthma. Can J Physiol Pharm 87:729–735

    Article  CAS  Google Scholar 

  59. Sinha AK (1972) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  PubMed  CAS  Google Scholar 

  60. Sivakumar S, Subramanian SP (2009) Pancreatic tissue protective nature of D-pinitol studied in streptozotocin-mediated oxidative stress in experimental diabetic rats. Eur J Pharmacol 622:65–70

    Article  PubMed  CAS  Google Scholar 

  61. Strain JJ (1991) Disturbances of micronutrient and antioxidant status in diabetes. Proc Nutr Soc 50:591–604

    Article  PubMed  CAS  Google Scholar 

  62. Szymonik-Lesiuk S, Czechowska G, Stryjecka-Zimmer M, Slomka M, Madro A et al (2003) Catalase, superoxide dismutase, and glutathione peroxidase activities in various rat tissues after carbon tetrachloride intoxication. J Hepatobiliary Pancreat Surg 10:309–315

    Article  PubMed  Google Scholar 

  63. Thomas CE, McLean LR, Parker RA, Ohlweiler DF (1992) Ascorbate and phenolic antioxidant interactions in prevention of liposomal oxidation. Lipids 27:543–550

    Article  PubMed  CAS  Google Scholar 

  64. van Acker FAA, Schouten O, Haenen GRMM, van der Vijgh WJF, Bast A (2000) Flavonoids can replace [alpha]-tocopherol as an antioxidant. FEBS Lett 473:145–148

    Article  PubMed  Google Scholar 

  65. West IC (2000) Radicals and oxidative stress in diabetes. Diabet Med 17:171–180

    Article  PubMed  CAS  Google Scholar 

  66. Wilcox LJ, Borradaile NM, Huff MW (1999) Antiatherogenic properties of naringenin, a citrus flavonoid. Cardiovasc Drug Rev 17:160–178

    Article  CAS  Google Scholar 

  67. Yan H, Harding JJ (1997) Glycation-induced inactivation and loss of antigenicity of catalase and superoxide dismutase. Biochem J 328(Pt 2):599–605

    PubMed  CAS  Google Scholar 

  68. Yen F-L, Wu T-H, Lin L-T, Cham T-M, Lin C-C (2009) Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCl4-induced acute liver failure. Pharm Res 26: 893-902-902.

    Google Scholar 

  69. Zimmerman HJ, Seef LB (1970) Enzymes in hepatic disease; Goodly EL, editor. Philadephia: Lea and Febiger. pp. 1-38.

Download references

Acknowledgement

The authors would like to thank the University Grants Commission-Special Assistance Programme (UGC-SAP) for the instrumentation facility.

Conflict of interest statement

The authors declare that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Geraldine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annadurai, T., Muralidharan, A.R., Joseph, T. et al. Antihyperglycemic and antioxidant effects of a flavanone, naringenin, in streptozotocin–nicotinamide-induced experimental diabetic rats. J Physiol Biochem 68, 307–318 (2012). https://doi.org/10.1007/s13105-011-0142-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-011-0142-y

Keywords