[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Estimation of Surface Moisture Content using Sentinel-1 C-band SAR Data Through Machine Learning Models

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Monitoring the spatio-temporal variation in soil moisture content (SMC) of the surface soil layer is essential for agriculture and water resource management activities, especially in regions where the socio-economic condition and livelihood depend upon agriculture and allied sectors. In the present study, we have compared different machine learning (ML) and linear regression models to estimate the SMC integrating field observed soil moisture and Sentinel-1 SAR data. Total 56 soil samples were collected from the surface soil layer (~ 5 cm) in correspondence with the passing date of the Sentinel-1 sensor over the study area. The surface SMC was estimated for bare soil areas, which was extracted by applying the threshold values on vegetation and water index maps derived from the Sentinel-2 multispectral data. The univariate linear regression with the co-polarized VV band provided higher accuracy compared to the cross-polarized VH band. However, the multiple linear regression with VV and VH bands indicated similar accuracy as obtained by the VV band alone. The random forest model was observed as the best performing ML model for soil moisture estimation (R2 = 0.87 and 0.93 during modeling and validation, respectively; RMSE: ~ 0.03). The obtained results indicate well accurate surface soil moisture verified with in-situ information collected during the dry rabi crop season (January to March 2019). The maximum SMC was observed for March, followed by February and January, that corroborated with the total monthly precipitation and irrigation activities. The study highlights the potentiality of ML models and Sentinel-1 SAR data for soil moisture estimation, which is useful for policy-level implications and decision making in agriculture and water resource management activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abbaszadeh, P., Moradkhani, H., & Zhan, X. (2019). Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method. Water Resources Research, 55(1), 324–344. https://doi.org/10.1029/2018WR023354.

    Article  Google Scholar 

  • Abburu, S., & Golla, S. B. (2015). Satellite image classification methods and techniques: A review. International journal of computer applications, 119(8), 20–25.

  • Ahmad, S., Kalra, A., & Stephen, H. (2010). Estimating soil moisture using remote sensing data: A machine learning approach. Advances in Water Resources, 33(1), 69–80.

    Article  Google Scholar 

  • Alexakis, D. D., Mexis, F.-D.K., Vozinaki, A.-E.K., Daliakopoulos, I. N., & Tsanis, I. K. (2017). Soil moisture content estimation based on Sentinel-1 and auxiliary earth observation products. A hydrological approach. Sensors, 17(6), 1455.

    Article  Google Scholar 

  • Attema, E. P. W., & Ulaby, F. T. (1978). Vegetation modeled as a water cloud. Radio Science, 13(2), 357–364.

    Article  Google Scholar 

  • Bao, Y., Lin, L., Wu, S., Deng, K. A. K., & Petropoulos, G. P. (2018). Surface soil moisture retrievals over partially vegetated areas from the synergy of Sentinel-1 and Landsat 8 data using a modified water-cloud model. International Journal of Applied Earth Observation and Geoinformation, 72, 76–85.

    Article  Google Scholar 

  • Barrett, B. W., Dwyer, E., & Whelan, P. (2009). Soil moisture retrieval from active spaceborne microwave observations: An evaluation of current techniques. Remote Sensing, 1(3), 210–242.

    Article  Google Scholar 

  • Bousbih, S., Zribi, M., Lili-Chabaane, Z., Baghdadi, N., El Hajj, M., Gao, Q., & Mougenot, B. (2017). Potential of sentinel-1 radar data for the assessment of soil and cereal cover parameters. Sensors (Switzerland). https://doi.org/10.3390/s17112617.

    Article  Google Scholar 

  • Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.

    Article  Google Scholar 

  • Breiman, L., Liaw, A., Wiener, M., et al. (2001). Classification and regression by randomForest. Remote Sensing of Environment, 56(3), 52–56.

    Google Scholar 

  • Buddhiraju, K. M., & Rizvi, I. A. (2010). Comparison of CBF, ANN and SVM classifiers for object based classification of high resolution satellite images. In 2010 IEEE international geoscience and remote sensing symposium (pp. 40–43).

  • Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3), 273–297.

    Google Scholar 

  • Du, P., Xia, J., Zhang, W., Tan, K., Liu, Y., & Liu, S. (2012). Multiple classifier system for remote sensing image classification: A review. Sensors, 12(4), 4764–4792.

    Article  Google Scholar 

  • El Hajj, M., Baghdadi, N., Zribi, M., & Bazzi, H. (2017). Synergic use of Sentinel-1 and Sentinel-2 images for operational soil moisture mapping at high spatial resolution over agricultural areas. Remote Sensing, 9(12), 1292.

    Article  Google Scholar 

  • Finley, A. O., & McRoberts, R. E. (2008). Efficient k-nearest neighbor searches for multi-source forest attribute mapping. Remote Sensing of Environment, 112(5), 2203–2211.

    Article  Google Scholar 

  • Gao, Q., Zribi, M., Escorihuela, M. J., & Baghdadi, N. (2017). Synergetic use of Sentinel-1 and Sentinel-2 data for soil moisture mapping at 100 m resolution. Sensors, 17(9), 1966.

    Article  Google Scholar 

  • Gao, Q., Zribi, M., Escorihuela, M. J., Baghdadi, N., & Segui, P. Q. (2018). Irrigation mapping using Sentinel-1 time series at field scale. Remote Sensing, 10(9), 1495.

    Article  Google Scholar 

  • Haapanen, R., Ek, A. R., Bauer, M. E., & Finley, A. O. (2004). Delineation of forest/nonforest land use classes using nearest neighbor methods. Remote Sensing of Environment, 89(3), 265–271.

    Article  Google Scholar 

  • Hassan-Esfahani, L., Torres-Rua, A., Jensen, A., & McKee, M. (2015). Assessment of surface soil moisture using high-resolution multi-spectral imagery and artificial neural networks. Remote Sensing, 7(3), 2627–2646.

    Article  Google Scholar 

  • Hassan-Esfahani, L., Torres-Rua, A., Ticlavilca, A. M., Jensen, A., & McKee, M. (2014). Topsoil moisture estimation for precision agriculture using unmmaned aerial vehicle multispectral imagery. In 2014 IEEE geoscience and remote sensing symposium (pp. 3263–3266).

  • Khanna, S., Palacios-Orueta, A., Whiting, M. L., Ustin, S. L., Riaño, D., & Litago, J. (2007). Development of angle indexes for soil moisture estimation, dry matter detection and land-cover discrimination. Remote Sensing of Environment, 109(2), 154–165.

    Article  Google Scholar 

  • Kumar, M. S., Chandra, T. R., Kumar, D. P., & Manikandan, M. S. (2016). Monitoring moisture of soil using low cost homemade soil moisture sensor and Arduino UNO. In 2016 3rd international conference on advanced computing and communication systems (ICACCS) (Vol. 1, pp. 1–4).

  • Kweon, S.-K., & Oh, Y. (2014). A modified water-cloud model with leaf angle parameters for microwave backscattering from agricultural fields. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2802–2809.

    Article  Google Scholar 

  • Liaw, A., Wiener, M., et al. (2002). Classification and regression by randomForest. R News, 2(3), 18–22.

    Google Scholar 

  • Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259.

    Article  Google Scholar 

  • Paloscia, S., Pettinato, S., Santi, E., Notarnicola, C., Pasolli, L., & Reppucci, A. (2013). Soil moisture mapping using Sentinel-1 images: Algorithm and preliminary validation. Remote Sensing of Environment, 134, 234–248.

    Article  Google Scholar 

  • Pandit, A., Sawant, S., Mohite, J., & Pappula, S. (2020). A data-driven approach for bare surface soil moisture estimation using Sentinel-1 SAR data and ground observations. Geocarto International. https://doi.org/10.1080/10106049.2020.1805028.

  • Petropoulos, G. P., Griffiths, H. M., Dorigo, W., Xaver, A., & Gruber, A. (2013). Surface soil moisture estimation: Significance, controls and conventional measurement techniques. In G. Petropoulos (Ed.), Remote sensing of energy fluxes and soil moisture content (1st edition, pp. 234–248). Cambridge: CRC Press. https://doi.org/10.1201/b15610.

    Chapter  Google Scholar 

  • Pierdicca, N., Pulvirenti, L., & Pace, G. (2013). A prototype software package to retrieve soil moisture from Sentinel-1 data by using a bayesian multitemporal algorithm. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(1), 153–166.

    Article  Google Scholar 

  • Prasad, A. M., Iverson, L. R., & Liaw, A. (2006). Newer classification and regression tree techniques: Bagging and random forests for ecological prediction. Ecosystems, 9(2), 181–199.

    Article  Google Scholar 

  • Quesney, A., Le Hégarat-Mascle, S., Taconet, O., Vidal-Madjar, D., Wigneron, J.-P., Loumagne, C., & Normand, M. (2000). Estimation of watershed soil moisture index from ERS/SAR data. Remote Sensing of Environment, 72(3), 290–303.

    Article  Google Scholar 

  • Sekertekin, A., Marangoz, A. M., & Abdikan, S. (2020). ALOS-2 and Sentinel-1 SAR data sensitivity analysis to surface soil moisture over bare and vegetated agricultural fields. Computers and Electronics in Agriculture, 171, 105303.

    Article  Google Scholar 

  • Shi, J., Wang, J., Hsu, A. Y., O’Neill, P. E., & Engman, E. T. (1997). Estimation of bare surface soil moisture and surface roughness parameter using L-band SAR image data. IEEE Transactions on Geoscience and Remote Sensing, 35(5), 1254–1266.

    Article  Google Scholar 

  • Smola, A. J., & Schölkopf, B. (2004). A tutorial on support vector regression. Statistics and Computing, 14(3), 199–222.

    Article  Google Scholar 

  • Taconet, O., Vidal-Madjar, D., Emblanch, C., & Normand, M. (1996). Taking into account vegetation effects to estimate soil moisture from C-band radar measurements. Remote Sensing of Environment, 56(1), 52–56.

    Article  Google Scholar 

  • Ulaby, F. (1998). SAR biophysical retrievals: Lessons learned and challenges to overcome. In Proceedings of 2nd international workshop on retrieval of bio-& geo-physical parameters from SAR data for land applications, Nordwijk, The Netherlands, 21–23 October 1998.

  • Wagner, W., Lemoine, G., & Rott, H. (1999). A method for estimating soil moisture from ERS scatterometer and soil data. Remote Sensing of Environment, 70(2), 191–207.

    Article  Google Scholar 

  • Zeng, L., Hu, S., Xiang, D., Zhang, X., Li, D., Li, L., & Zhang, T. (2019). Multilayer soil moisture mapping at a regional scale from multisource data via a machine learning method. Remote Sensing, 11(3), 284.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pulakesh Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, S., Das, P., Dutta, D. et al. Estimation of Surface Moisture Content using Sentinel-1 C-band SAR Data Through Machine Learning Models. J Indian Soc Remote Sens 49, 887–896 (2021). https://doi.org/10.1007/s12524-020-01261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01261-x

Keywords

Navigation