[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Controllable photodynamic performance via an acidic microenvironment based on two-dimensional metal-organic frameworks for photodynamic therapy

  • Research Article
  • Published:
Nano Research Aims and scope

Abstract

Photodynamic therapy (PDT) is a widely-used technology for cancer therapy, but conventional photosensitizers still face some drawbacks, such as hydrophobicity, inadequate pharmacokinetics, low cell/tissue specificity, and uncontrollable photodynamic performance during the therapeutic process. Herein, we present a controllable photodynamic performance based on two-dimensional metal-organic frameworks (2D Zn-TCPP MOF) that displayed a week PDT effect under a neutral environment upon exposure to a 660 nm laser due to the degeneracy of Q bands of TCPP. However, the 2D Zn-TCPP MOF showed a significantly enhanced PDT effect in an acidic environment under irradiation with a 660 nm laser due to the released TCPP from decomposed MOF structure. From the in vitro outcomes, the 2D Zn-TCPP MOF showed controllable photodynamic performance from neutral to acidic environments. Due to the acidic tumor microenvironment, the 2D Zn-TCPP MOF presented the strongest antitumor effect in vivo under irradiation with a 660 nm laser. This work offers a promising strategy to develop a next-generation photosensitizer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu, X. Q.; Jiang, X. F.; Fan, T. J.; Zheng, Z. W.; Liu, Z. Y.; Chen, Y. B.; Cao, L. Q.; Xie, Z. J.; Zhang, D. W. et al. Recent advances in photodynamic therapy based on emerging two-dimensional layered nanomaterials. Nano Res. 2020, 13, 1485–1508.

    CAS  Google Scholar 

  2. Dougherty, T. J.; Gomer, C. J.; Henderson, B. W.; Jori, G.; Kessel, D.; Korbelik, M.; Moan, J.; Peng, Q. Photodynamic therapy. JNCI J. Natl. Cancer Inst. 1998, 90, 889–905.

    CAS  Google Scholar 

  3. Chen, Q.; Chen, J. W.; Yang, Z. J.; Zhang, L.; Dong Z. L.; Liu, Z. NIR-II light activated photodynamic therapy with protein-capped gold nanoclusters. Nano Res. 2018, 11, 5657–5669.

    CAS  Google Scholar 

  4. Lo, P. C.; Rodríguez-Morgade, M. S.; Pandey, R. K.; Ng, D. K. P.; Torres, T.; Dumoulin, F. The unique features and promises of phthalocyanines as advanced photosensitisers for photodynamic therapy of cancer. Chem. Soc. Rev. 2020, 49, 1041–1056.

    CAS  Google Scholar 

  5. Wang, Y. Z.; Wang, H. W.; Zhou, L.; Lu, J.; Jiang, B. L.; Liu, C. X.; Guo, J. C. Photodynamic therapy of pancreatic cancer: Where have we come from and where are we going? Photodiagn. Photodyn. Ther. 2020, 31, 101876.

    CAS  Google Scholar 

  6. Lucky, S. S.; Soo, K. C.; Zhang, Y. Nanoparticles in photodynamic therapy. Chem. Rev. 2015, 115, 1990–2042.

    CAS  Google Scholar 

  7. Dolmans, D. E. J. G. J.; Fukumura, D.; Jain, R. K. Photodynamic therapy for cancer. Nat. Rev. Cancer 2003, 3, 380–387.

    CAS  Google Scholar 

  8. Hong, E. J.; Choi, D. G.; Shim, M. S. Targeted and effective photodynamic therapy for cancer using functionalized nanomaterials. Acta Pharm. Sin. B 2016, 6, 297–307.

    Google Scholar 

  9. Zhu, W. J.; Yang, Y.; Jin, Q. T.; Chao, Y.; Tian, L. L.; Liu, J. J.; Dong Z. L.; Liu, Z. Two-dimensional metal-organic-framework as a unique theranostic nano-platform for nuclear imaging and chemophotodynamic cancer therapy. Nano Res. 2019, 12, 1307–1312.

    CAS  Google Scholar 

  10. Chouikrat, R.; Seve, A.; Vanderesse, R.; Benachour, H.; Barberi-Heyob, M.; Richeter, S.; Raehm, L.; Durand, J. O.; Verelst, M.; Frochot, C. Non polymeric nanoparticles for photodynamic therapy applications: Recent developments. Curr. Med. Chem. 2012, 19, 781–792.

    CAS  Google Scholar 

  11. Bharathiraja, S.; Moorthy, M. S.; Manivasagan, P.; Seo, H.; Lee, K. D.; Oh, J. Chlorin e6 conjugated silica nanoparticles for targeted and effective photodynamic therapy. Photodiagn. Photodyn. Ther. 2017, 19, 212–220.

    CAS  Google Scholar 

  12. Li, Y. J.; Hu, J.; Liu, X.; Liu, Y.; Lv, S. X.; Dang, J. J.; Ji, Y.; He, J. L.; Yin, L. C. Photodynamic therapy-triggered on-demand drug release from ROS-responsive core-cross-linked micelles toward synergistic anti-cancer treatment. Nano Res. 2019, 12, 999–1008.

    CAS  Google Scholar 

  13. Sun, J. Y.; Kormakov, S.; Liu, Y.; Huang, Y.; Wu, D. M.; Yang, Z. G. Recent progress in metal-based nanoparticles mediated photodynamic therapy. Molecules 2018, 23, 1704.

    Google Scholar 

  14. Huang, C. L.; Zhang, Z. M.; Guo, Q.; Zhang, L.; Fan, F.; Qin, Y.; Wang, H.; Zhou, S.; Ou-Yang, W. B.; Sun, H. F. et al. A dual-model imaging theragnostic system based on mesoporous silica nanoparticles for enhanced cancer phototherapy. Adv. Health. Mater. 2019, 8, 1900840.

    CAS  Google Scholar 

  15. Li, X. S.; Fan, H. H.; Guo, T.; Bai, H. R.; Kwon, N.; Kim, K. H.; Yu, S.; Cho, Y.; Kim, H.; Nam, K. T. et al. Sequential protein-responsive nanophotosensitizer complex for enhancing tumor-specific therapy. ACS Nano 2019, 13, 6702–6710.

    CAS  Google Scholar 

  16. Zeng, X. M.; Yan, S. Q.; Chen, P.; Du, W.; Liu, B. F. Modulation of tumor microenvironment by metal-organic-framework-derived nanoenzyme for enhancing nucleus-targeted photodynamic therapy. Nano Res. 2020, 13, 1527–1535.

    CAS  Google Scholar 

  17. Lin, A. L.; Li, S. Z.; Xu, C. H.; Li, X. S.; Zheng, B. Y.; Gu, J. J.; Ke, M. R.; Huang, J. D. A pH-responsive stellate mesoporous silica based nanophotosensitizer for in vivo cancer diagnosis and targeted photodynamic therapy. Biomater. Sci. 2019, 7, 211–219.

    CAS  Google Scholar 

  18. Gai, S. L.; Yang, G. X.; He, P. P.; He, F.; Lin, J.; Jin, D. Y.; Xing, B. G. Recent advances in functional nanomaterials for light-triggered cancer therapy. Nano Today 2018, 19, 146–187.

    CAS  Google Scholar 

  19. Huang, K.; Li, Z. J.; Lin, J.; Han, G.; Huang, P. Two-dimensional transition metal carbides and nitrides (MXenes) for biomedical applications. Chem. Soc. Rev. 2018, 47, 5109–5124.

    CAS  Google Scholar 

  20. Saleem, J.; Wang, L. M.; Chen, C. Y. Carbon-based nanomaterials for cancer therapy via targeting tumor microenvironment. Adv. Health. Mater. 2018, 7, 1800525.

    Google Scholar 

  21. Kuo, W. S.; Shao, Y. T.; Huang, K. S.; Chou, T. M.; Yang, C. H. Antimicrobial amino-functionalized nitrogen-doped graphene quantum dots for eliminating multidrug-resistant species in dual-Modality photodynamic therapy and bioimaging under two-photon excitation. ACS Appl. Mater. Interfaces 2018, 10, 14438–14446.

    CAS  Google Scholar 

  22. Xiao, L.; Gu, L.; Howell, S. B.; Sailor, M. J. Porous silicon nanoparticle photosensitizers for singlet oxygen and their phototoxicity against cancer cells. ACS Nano 2011, 5, 3651–3659.

    CAS  Google Scholar 

  23. Chan, M. H.; Pan, Y. T.; Lee, I. J.; Chen, C. W.; Chan, Y. C.; Hsiao, M.; Wang, F.; Sun, L. D.; Chen, X. Y.; Liu, R. S. Minimizing the heat effect of photodynamic therapy based on inorganic nanocomposites mediated by 808 nm near-infrared light. Small 2017, 13, 1700038.

    Google Scholar 

  24. Liu, J. N.; Bu, W. B.; Shi, J. L. Chemical design and synthesis of functionalized probes for imaging and treating tumor hypoxia. Chem. Rev. 2017, 117, 6160–6224.

    CAS  Google Scholar 

  25. Liu, J.; Jiang, X. T.; Zhang, R. Y.; Zhang, Y.; Wu, L. M.; Lu, W.; Li, J. Q.; Li, Y. C.; Zhang, H. MXene — enabled electrochemical microfluidic biosensor: Applications toward multicomponent continuous monitoring in whole blood. Adv. Funct. Mater. 2019, 29, 1807326.

    Google Scholar 

  26. Master, A.; Livingston, M.; Gupta, A. S. Photodynamic nanomedicine in the treatment of solid tumors: Perspectives and challenges. J. Control. Release 2013, 168, 88–102.

    CAS  Google Scholar 

  27. He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

    CAS  Google Scholar 

  28. Wang, W. Q.; Wang, L.; Li, Z. S.; Xie, Z. G. BODIPY-containing nanoscale metal-organic frameworks for photodynamic therapy. Chem. Commun. 2016, 52, 5402–5405.

    CAS  Google Scholar 

  29. Liu, W.; Wang, Y. M.; Li, Y. H.; Cai, S. J.; Yin, X. B.; He, X. W.; Zhang, Y. K. Fluorescent imaging-guided chemotherapy-and-photodynamic dual therapy with nanoscale porphyrin metal-organic framework. Small 2017, 13, 1603459.

    Google Scholar 

  30. Lan, G. X.; Ni, K. Y.; Xu, Z. W.; Veroneau, S. S.; Song, Y.; Lin, W. B. Nanoscale metal-organic framework overcomes hypoxia for photodynamic therapy primed cancer immunotherapy. J. Am. Chem. Soc. 2018, 140, 5670–5673.

    CAS  Google Scholar 

  31. Lu, K. D.; Aung, T.; Guo, N. N.; Weichselbaum, R.; Lin, W. B. Nanoscale metal-organic frameworks for therapeutic, imaging, and sensing applications. Adv. Mater. 2018, 30, 1707634.

    Google Scholar 

  32. Lan, G. X.; Ni, K. Y.; Veroneau, S. S.; Feng, X. Y.; Nash, G. T.; Luo, T. K.; Xu, Z. W.; Lin, W. B. Titanium-based nanoscale metal-organic framework for type I photodynamic therapy. J. Am. Chem. Soc. 2019, 141, 4204–4208.

    CAS  Google Scholar 

  33. Lu, K. D.; He, C. B.; Lin, W. B. Nanoscale metal-organic framework for highly effective photodynamic therapy of resistant head and neck cancer. J. Am. Chem. Soc. 2014, 136, 16712–16715.

    CAS  Google Scholar 

  34. Lu, K. D.; He, C. B.; Lin, W. B. A chlorin-based nanoscale metal-organic framework for photodynamic therapy of colon cancers. J. Am. Chem. Soc. 2015, 137, 7600–7603.

    CAS  Google Scholar 

  35. Feng, D. W.; Chung, W. C.; Wei, Z. W.; Gu, Z. Y.; Jiang, H. L.; Chen, Y. P.; Darensbourg, D. J.; Zhou, H. C. Construction of ultrastable porphyrin Zr metal-organic frameworks through linker elimination. J. Am. Chem. Soc. 2013, 135, 17105–17110.

    CAS  Google Scholar 

  36. Feng, D. W.; Gu, Z. Y.; Chen, Y. P.; Park, J.; Wei, Z. W.; Sun, Y. J.; Bosch, M.; Yuan, S.; Zhou, H. C. A highly stable porphyrinic zirconium metal-organic framework with shp-a topology. J. Am. Chem. Soc. 2014, 136, 17714–17717.

    CAS  Google Scholar 

  37. Park, J.; Jiang, Q.; Feng, D. W.; Mao, L. Q.; Zhou, H. C. Size-controlled synthesis of porphyrinic metal-organic framework and functionalization for targeted photodynamic therapy. J. Am. Chem. Soc. 2016, 138, 3518–3525

    CAS  Google Scholar 

  38. Wu, M. X.; Yang, Y. W. Metal-organic framework (MOF)-based drug/cargo delivery and cancer therapy. Adv. Mater. 2017, 29, 1606134.

    Google Scholar 

  39. Park, J.; Jiang, Q.; Feng, D. W.; Zhou, H. C. Innentitelbild: Controlled generation of singlet oxygen in living cells with tunable ratios of the photochromic switch in metal-organic frameworks (Angew. Chem. 25/2016). Angew. Chem. 2016, 128, 7124–7124.

    Google Scholar 

  40. Zhao, M. T.; Wang, Y. X.; Ma, Q. L.; Huang, Y.; Zhang, X.; Ping, J. F.; Zhang, Z. C.; Lu, Q. P.; Yu, Y. F.; Xu, H. et al. Ultrathin 2D metal-organic framework nanosheets. Adv. Mater. 2015, 27, 7372–7378.

    CAS  Google Scholar 

  41. He, Y. P.; Tan, Y. X.; Zhang, J. Stable Mg-Metal-Organic Framework (MOF) and unstable Zn-MOF based on nanosized Tris((4-carboxyl)phenylduryl)amine ligand. Cryst. Growth Des. 2013, 13, 6–9.

    CAS  Google Scholar 

  42. Zhao, Y. W.; Jiang, L.; Shangguan, L.; Mi, L.; Liu, A. R.; Liu, S. Q. Synthesis of porphyrin-based two-dimensional metal-organic framework nanodisk with small size and few layers. J. Mater. Chem. A 2018, 6, 2828–2833.

    CAS  Google Scholar 

  43. Jiang, Y. Y.; Sun, L. B.; Du, J. F.; Liu, Y. C.; Shi, H. Z.; Liang, Z. Q.; Li, J. Y. Multifunctional zinc metal-organic framework based on designed H4TCPP ligand with aggregation-induced emission effect: CO2 adsorption, luminescence, and sensing property. Cryst. Growth Des. 2017, 17, 2090–2096.

    CAS  Google Scholar 

  44. Zhao, Y. W.; Kuang, Y.; Liu, M.; Wang, J. N.; Pei, R. J. Synthesis of metal-organic framework nanosheets with high relaxation rate and singlet oxygen yield. Chem. Mater. 2018, 30, 7511–7520.

    CAS  Google Scholar 

  45. Wang, Y. X.; Zhao, M. T.; Ping, J. F.; Chen, B.; Cao, X. H.; Huang, Y.; Tan, C. L.; Ma, Q. L.; Wu, S. X.; Yu, Y. F. et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv. Mater. 2016, 28, 4149–4155.

    CAS  Google Scholar 

  46. Fu, H. G.; Chen, Y.; Yu, Q. L.; Liu, Y. A tumor-targeting Ru/polysaccharide/protein supramolecular assembly with high photodynamic therapy ability. Chem. Commun. 2019, 55, 3148–3151.

    CAS  Google Scholar 

  47. Fang, C. H.; Jia, H. L.; Chang, S.; Ruan, Q. F.; Wang, P. Chen, T.; Wang, J. F. (Gold core)/(titania shell) nanostructures for plasmonenhanced photon harvesting and generation of reactive oxygen species. Energy Environ. Sci. 2014, 7, 3431–3438.

    CAS  Google Scholar 

  48. Hang, L. F.; Li, H. L.; Zhang, T.; Men, D. D.; Zhang, C.; Gao, P.; Zhang, Q. L. Au@Prussian blue hybrid nanomaterial synergy with a chemotherapeutic drug for tumor diagnosis and chemodynamic therapy. ACSAppl. Mater. Interfaces 2019, 11, 39493–39502.

    CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Nos. 51903162 and U1903120) and Science foundation of Guangdong Second Provincial General Hospital (No. YN2018-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lifeng Hang or Guihua Jiang.

Electronic Supplementary Material

12274_2020_3093_MOESM1_ESM.pdf

Controllable photodynamic performance via an acidic microenvironment based on two-dimensional metal-organic frameworks for photodynamic therapy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hang, L., Zhang, T., Wen, H. et al. Controllable photodynamic performance via an acidic microenvironment based on two-dimensional metal-organic frameworks for photodynamic therapy. Nano Res. 14, 660–666 (2021). https://doi.org/10.1007/s12274-020-3093-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3093-1

Keywords

Navigation