[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Research progress on synthesis of zeolites from coal fly ash and environmental applications

  • Review Article
  • Published:
Frontiers of Environmental Science & Engineering Aims and scope Submit manuscript

Abstract

The by-product of coal combustion, coal fly ash (CFA), has become one of the world’s most emitted solid wastes, and bulk utilization while achieving high value-added products is the focus of current research. Using CFA to prepare zeolite cannot only reduce environmental pressure, but also obtain high value-added products, which has a good market prospect. In this paper, the research progress of hydrothermal synthesis method of CFA zeolites is reviewed in detail and summarized several other synthetic methods of CFA zeolites. This review also presents an overview of CFA zeolites application in environmental applications like water treatment, gas adsorption and soil remediation. However, a considerable number of literature data have documented using CFA zeolites for water treatment, whereas research on CFA zeolites application to gas adsorption and soil remediation is still limited. In addition, the current status of basic research on the industrial production of CFA zeolites is briefly summarized, and the development trend of the synthetic zeolite of CFA is prospected. After the feasibility analysis of the industrial production of CFA zeolite, it is concluded that the only two methods with high feasibility for industrial application are two-step hydrothermal and alkali melting methods, and the industrial production technology still needs to be studied in depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelrahman E A, Abou El-Reash Y G, Youssef H M, Kotp Y H, Hegazey R M (2021). Utilization of rice husk and waste aluminum cans for the synthesis of some nanosized zeolite, zeolite/zeolite, and geopolymer/zeolite products for the efficient removal of Co(II), Cu(II), and Zn(II) ions from aqueous media. Journal of Hazardous Materials, 401: 123813–123821

    Article  CAS  Google Scholar 

  • Ahmaruzzaman M (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3): 327–363

    Article  CAS  Google Scholar 

  • Ahmaruzzaman M, Gupta V K (2012). Application of coal fly ash in air quality management. Industrial & Engineering Chemistry Research, 51(47): 15299–15314

    Article  CAS  Google Scholar 

  • Aldahri T, Behin J, Kazemian H, Rohani S (2016). Synthesis of zeolite Na−P from coal fly ash by thermo-sonochemical treatment. Fuel, 182: 494–501

    Article  CAS  Google Scholar 

  • American Society for Testing and Materials (2005). Committee C-9 on Concrete and Concrete Aggregates, Standard Specifcation for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. In: Annual Book of ASTM Standards 2005. Washington, DC: American Society for Testing and Materials Committee

    Google Scholar 

  • Amoni B C, Freitas A D L, Bessa R L, Oliveira C P, Bastos-Neto M, Azevedo D C S, Lucena S M P, Sasaki J, Soares J B, Soares S A, Loiola A R, et al. (2022). Effect of coal fly ash treatments on synthesis of high-quality zeolite A as a potential additive for warm mix asphalt. Materials Chemistry and Physics, 275: 125197

    Article  CAS  Google Scholar 

  • Amrhein C, Haghnia G H, Kim T S, Mosher P A, Gagajena R C, Amanios T, de la Torre L (1996). Synthesis and properties of zeolites from coal fly ash. Environmental Science & Technology, 30(3): 735–742

    Article  CAS  Google Scholar 

  • Antoniadis V, Polyzois T, Golia E E, Petropoulos S A (2017). Hexavalent chromium availability and phytoremediation potential of Cichorium spinosum as affect by manure, zeolite and soil ageing. Chemosphere, 171: 729–734

    Article  CAS  Google Scholar 

  • Apiratikul R, Pavasant P (2008). Sorption of Cu2+, Cd2+, and Pb2+ using modified zeolite from coal fly ash. Chemical Engineering Journal, 144(2): 245–258

    Article  CAS  Google Scholar 

  • Asl Hosseini S M, Ghadi A, Baei Sharifzadeh M, Javadian H, Maghsudi M, Kazemian H (2018). Porous catalysts fabricated from coal fly ash as cost-effective alternatives for industrial applications: a review. Fuel, 217: 320–342

    Article  Google Scholar 

  • Atun G, Hisarlı G, Kurtoğlu A E, Ayar N (2011). A comparison of basic dye adsorption onto zeolitic materials synthesized from fly ash. Journal of Hazardous Materials, 187(1–3): 562–573

    Article  CAS  Google Scholar 

  • Behin J, Bukhari S S, Dehnavi V, Kazemian H, Rohani S (2014). Using coal fly ash and wastewater for microwave synthesis of LTA zeolite. Chemical Engineering & Technology, 37(9): 1532–1540

    Article  CAS  Google Scholar 

  • Belviso C (2018). Ultrasonic vs hydrothermal method: different approaches to convert fly ash into zeolite. How they affect the stability of synthetic products over time? Ultrasonics Sonochemistry, 43: 9–14

    CAS  Google Scholar 

  • Belviso C (2020). Zeolite for potential toxic metal uptake from contaminated soil: a brief review. Processes, 8: 820

    Article  CAS  Google Scholar 

  • Belviso C, Cavalcante F, Fiore S (2010). Synthesis of zeolite from Italian coal fly ash: differences in crystallization temperature using seawater instead of distilled water. Waste Management, 30: 839–847

    Article  CAS  Google Scholar 

  • Belviso C, Perchiazzi N, Cavalcante F (2019). Zeolite from fly ash: an investigation on metastable behavior of the newly formed minerals in a medium-high-temperature range. Industrial & Engineering Chemistry Research, 58(44): 20472–20480

    Article  CAS  Google Scholar 

  • Boycheva S, Zgureva D, Lazarova H, Popova M (2021). Comparative studies of carbon capture onto coal fly ash zeolites Na−X and Na−Ca−X. Chemosphere, 271: 129505

    Article  CAS  Google Scholar 

  • Bukhari S S, Behin J, Kazemian H, Rohani S (2015). Conversion of coal fly ash to zeolite utilizing microwave and ultrasound energies: a review. Fuel, 140: 250–266

    Article  CAS  Google Scholar 

  • Cardoso A M, Horn M B, Ferret L S, Azevedo C M N, Pires M (2015). Integrated synthesis of zeolites 4A and Na−P1 using coal fly ash for application in the formulation of detergents and swine wastewater treatment. Journal of Hazardous Materials, 287: 69–77

    Article  CAS  Google Scholar 

  • Chang H L, Shih W H (2000). Synthesis of zeolites A and X from fly ashes and their ion-exchange behavior with cobalt ions. Industrial & Engineering Chemistry Research, 39(11): 4185–4191

    Article  CAS  Google Scholar 

  • Chen C T, Iyoki K, Yonezawa Y, Okubo T, Wakihara T (2020). Understanding the nucleation and crystal growth of zeolites: a case study on the crystallization of ZSM-5 from a hydrogel system under ultrasonication. Journal of Physical Chemistry C, 124(21): 11516–11524

    Article  CAS  Google Scholar 

  • Chen H C, Khalili N, Li J J (2018a). Development of stabilized Ca-based CO2 sorbents supported by fly ash. Chemical Engineering Journal, 345: 312–319

    Article  CAS  Google Scholar 

  • Chen J B, Yang R J, Zhang Z Y, Wu D Y (2022). Removal of fluoride from water using aluminum hydroxide-loaded zeolite synthesized from coal fly ash. Journal of Hazardous Materials, 421: 126817

    Article  CAS  Google Scholar 

  • Chen W T, Song G Q, Lin Y Y, Qiao J T, Wu T H, Yi X Y, Kawi S (2021a). A green and efficient strategy for utilizing of coal fly ash to synthesize K-MER zeolite as catalyst for cyanoethylation and adsorbent of CO2. Micropor. Mesopor. Mat. 326: 111353

    Article  CAS  Google Scholar 

  • Chen W T, Song G Q, Lin Y Y, Qiao J T, Wu T H, Yi X Y, Kawi S (2021b). Synthesis and catalytic performance of Linde-type A zeolite (LTA) from coal fly ash utilizing microwave and ultrasound collaborative activation method. Catalysis Today, 397: 407–418

    Article  Google Scholar 

  • Chen Y, Chen J Q, Li L K, Yao Y Y, Yuan L Q, Li T, Ren B Z (2018b). Progress in synthesis and application of fly ash zeolite. Bulletin of the Chinese Ceramic Society, 37: 3454–3459

    Google Scholar 

  • Cheng W, Lei S G, Bian Z F, Zhao Y B, Li Y C, Gan Y D (2020). Geographic distribution of heavy metals and identification of their sources in soils near large, open-pit coal mines using positive matrix factorization. Journal of Hazardous Materials, 387: 121666

    Article  CAS  Google Scholar 

  • Chindaprasirt P, Rattanasak U, Jaturapitakkul C (2011). Utilization of fly ash blends from pulverized coal and fluidized bed combustions in geopolymeric materials. Cement and Concrete Composites, 33(1): 55–60

    Article  CAS  Google Scholar 

  • Choi C L, Park M, Lee D H, Kim J E, Park B Y, Choi J (2001). Salt-thermal zeolitization of fly ash. Environmental Science & Technology, 35(13): 2812–2816

    Article  CAS  Google Scholar 

  • Cronstedt A F (1756). Description and investigation of an unknown mountain species called Zheolites. Royal Swedish Academy of Sciences, 18: 111–113

    Google Scholar 

  • Deng H, Ge Y (2015). Formation of NaP zeolite from fused fly ash for the removal of Cu(II) by an improved hydrothermal method. RSC Advances, 5(12): 9180–9188

    Article  CAS  Google Scholar 

  • Derkowski A, Franus W, Beran E, Czímerová A (2006). Properties and potential applications of zeolitic materials produced from fly ash using simple method of synthesis. Powder Technology, 166, 47–54

    Article  CAS  Google Scholar 

  • Ding Y H, Sartaj M (2015). Statistical analysis and optimization of ammonia removal from aqueous solution by zeolite using factorial design and response surface methodology. Journal of Environmental Chemical Engineering, 3(2): 807–814

    Article  CAS  Google Scholar 

  • Du Plessis P, Ojumu T, Fatoba O, Akinyeye R, Petrik L (2014). Distributional fate of elements during the synthesis of zeolites from south african coal fly ash. Materials (Basel), 7(4): 3305–3318

    Article  CAS  Google Scholar 

  • El-Naggar M R, El-Kamash A M, El-Dessouky M I, Ghonaim A K (2008). Two-step method for preparation of NaA-X zeolite blend from fly ash for removal of cesium ions. Journal of Hazardous Materials, 154, 963–972

    Article  CAS  Google Scholar 

  • Fan W, Morozumi K, Kimura R, Yokoi T, Okubo T (2008). Synthesis of nanometer-sized sodalite without adding organic additives. Langmuir, 24(13): 6952–6958

    Article  CAS  Google Scholar 

  • Fotovat F, Kazemian H, Kazemeini M (2009). Synthesis of Na−A and faujasitic zeolites from high silicon fly ash. Materials Research Bulletin, 44, 913–917

    Article  CAS  Google Scholar 

  • Franus W, Wdowin M, Franus M (2014). Synthesis and characterization of zeolites prepared from industrial fly ash. Environmental Monitoring and Assessment, 186(9): 5721–5729

    Article  CAS  Google Scholar 

  • Fukasawa T, Horigome A, Karisma A D, Maeda N, Huang A, Fukui K (2018). Utilization of incineration fly ash from biomass power plants for zeolite synthesis from coal fly ash by microwave hydrothermal treatment. Advanced Powder Technology, 29(3): 450–456

    Article  CAS  Google Scholar 

  • Fukui K, Kanayama K, Yamamoto T, Yoshida H (2007). Effects of microwave irradiation on the crystalline phase of zeolite synthesized from fly ash by hydrothermal treatment. Advanced Powder Technology, 18(4): 381–393

    Article  CAS  Google Scholar 

  • Gollakota A R K, Volli V, Shu C M (2019). Progressive utilization prospects of coal fly ash: a review. Science of the Total Environment, 672: 951–989

    Article  CAS  Google Scholar 

  • He K, Chen Y, Tang Z, Hu Y (2016). Removal of heavy metal ions from aqueous solution by zeolite synthesized from fly ash. Environmental Science and Pollution Research International, 23(3): 2778–2788

    Article  CAS  Google Scholar 

  • He X, Yao B, Xia Y, Huang H, Gan Y, Zhang W (2020). Coal fly ash derived zeolite for highly efficient removal of Ni2+ in waste water. Powder Technology, 367: 40–46

    Article  CAS  Google Scholar 

  • He Y, Tang S W, Yin S H, Li S W (2021). Research progress on green synthesis of various high-purity zeolites from natural material-kaolin. Journal of Cleaner Production, 306: 127248

    Article  CAS  Google Scholar 

  • Hollman G G, Steenbruggen G, Janssen-Jurkovicova M (1999). A two-step process for the synthesis of zeolites from coal fly ash. Fuel, 78, 1225–1230

    Article  CAS  Google Scholar 

  • Hong J L X, Maneerung T, Koh S N, Kawi S, Wang C H (2017). Conversion of coal fly ash into zeolite materials: synthesis and characterizations, process design, and its cost-benefit analysis. Industrial & Engineering Chemistry Research, 56(40): 11565–11574

    Article  CAS  Google Scholar 

  • Hui K S, Chao C Y H (2006). Effects of step-change of synthesis temperature on synthesis of zeolite 4A from coal fly ash. Microporous and Mesoporous Materials, 88(1–3): 145–151

    Article  CAS  Google Scholar 

  • Hui K S, Chao C Y H (2008). Methane emissions abatement by multi-ion-exchanged zeolite A prepared from both commercial-grade zeolite and coal fly ash. Environmental Science & Technology, 42(19): 7392–7397

    Article  CAS  Google Scholar 

  • Hums E, Baser H, Schwieger W (2016). In situ ultrasonic measurements: a powerful tool to control the synthesis of zeolites from coal fly ash. Research on Chemical Intermediates, 42(10): 7513–7532

    Article  CAS  Google Scholar 

  • Höller H, Wirsching U (1985). Zeolites formation from fly ash. Fortschritte der Mineralogie, 63: 21–43

    Google Scholar 

  • Inada M, Eguchi Y, Enomoto N, Hojo J (2005a). Synthesis of zeolite from coal fly ashes with different silica–alumina composition. Fuel, 84(2–3): 299–304

    Article  CAS  Google Scholar 

  • Inada M, Tsujimoto H, Eguchi Y, Enomoto N, Hojo J (2005b). Microwave-assisted zeolite synthesis from coal fly ash in hydrothermal process. Fuel, 84: 1482–1486

    CAS  Google Scholar 

  • Iqbal A, Sattar H, Haider R, Munir S (2019). Synthesis and characterization of pure phase zeolite 4A from coal fly ash. Journal of Cleaner Production, 219: 258–267

    Article  CAS  Google Scholar 

  • Itskos G, Koutsianos A, Koukouzas N, Vasilatos C (2015). Zeolite development from fly ash and utilization in lignite mine-water treatment. International Journal of Mineral Processingnt, 139, 43–50

    Article  CAS  Google Scholar 

  • Izidoro J D C, Fungaro D A, Abbott J E, Wang S (2013). Synthesis of zeolites X and A from fly ashes for cadmium and zinc removal from aqueous solutions in single and binary ion systems. Fuel, 103, 827–834

    Article  CAS  Google Scholar 

  • Ji X D, Zhang M L, Wang Y J, Song Y C, Ke Y Y, Wang Y Q (2015). Immobilization of ammonium and phosphate in aqueous solution by zeolites synthesized from fly ashes with different compositions. Journal of Industrial and Engineering Chemistry, 22: 1–7

    Article  Google Scholar 

  • Jin J, Li X D, Chi Y, Yan J H (2010). Heavy metals stabilization in medical waste incinerator fly ash using alkaline assisted supercritical water technology. Waste Management & Research, 28(12): 1133–1142

    Article  CAS  Google Scholar 

  • Joseph I V, Tosheva L, Doyle A M (2020). Simultaneous removal of Cd(II), Co(II), Cu(II), Pb(II), and Zn(II) ions from aqueous solutions via adsorption on FAU-type zeolites prepared from coal fly ash. Journal of Environmental Chemical Engineering, 8, 103895

    Article  CAS  Google Scholar 

  • Ju T Y, Han S Y, Meng F Z, Lin L, Li J L, Chen K L, Jiang J G (2023). Porous silica synthesis out of coal fly ash with no residue generation and complete silicon separation. Frontiers of Environmental Science & Engineering, 17(9): 112

    Article  CAS  Google Scholar 

  • Ju T Y, Meng Y, Han S Y, Lin L, Jiang J G (2021). On the state of the art of crystalline structure reconstruction of coal fly ash: a focus on zeolites. Chemosphere, 283: 131010

    Article  CAS  Google Scholar 

  • Juan R, Hernández S, Andrés J M, Ruiz C (2009). Ion exchange uptake of ammonium in wastewater from a Sewage Treatment Plant by zeolitic materials from fly ash. Journal of Hazardous Materials, 161(2–3): 781–786

    Article  CAS  Google Scholar 

  • Kacirek H, Lechert H (1976). Rates of crystallization and a model for the growth of sodium-Y zeolites. Journal of Physical Chemistry, 80(12): 1291–1296

    Article  CAS  Google Scholar 

  • Kalvachev Y, Zgureva D, Boycheva S, Barbov B, Petrova N (2016). Synthesis of carbon dioxide adsorbents by zeolitization of fly ash. Journal of Thermal Analysis and Calorimetry, 124, 101–106

    Article  CAS  Google Scholar 

  • Kazemian H, Naghdali Z, Ghaffari Kashani T, Farhadi F (2010). Conversion of high silicon fly ash to Na−P1 zeolite: alkaline fusion followed by hydrothermal crystallization. Advanced Powder Technology, 21, 279–283

    Article  CAS  Google Scholar 

  • Khaleque A, Alam M M, Hoque M, Mondal S, Haider J B, Xu B, Johir M A H, Karmakar A K, Zhou J L, Ahmed M B, Moni M A, et al. (2020). Zeolite synthesis from low-cost materials and environmental applications: a review. Environmental Advances, 2: 100019

    Article  Google Scholar 

  • Koshy N, Singh D N (2016). Fly ash zeolites for water treatment applications. Journal of Environmental Chemical Engineering, 4(2): 1460–1472

    Article  CAS  Google Scholar 

  • Koukouzas N, Vasilatos C, Itskos G, Mitsis I, Moutsatsou A (2010). Removal of heavy metals from wastewater using CFB-coal fly ash zeolitic materials. Journal of Hazardous Materials, 173, 581–588

    Article  CAS  Google Scholar 

  • Kumar M M, Irshad K A, Jena H (2021). Removal of Cs+ and Sr2+ ions from simulated radioactive waste solutions using Zeolite-A synthesized from kaolin and their structural stability at high pressures. Microporous and Mesoporous Materials. 312: 110773–110779

    Article  Google Scholar 

  • Kumar M M, Jena H (2022). Direct single-step synthesis of phase pure zeolite Na−P1, hydroxy sodalite and analcime from coal fly ash and assessment of their Cs+ and Sr2+ removal efficiencies. Microporous and Mesoporous Materials, 333: 111738

    Article  CAS  Google Scholar 

  • Kunecki P, Panek R, Koteja A, Franus W (2018). Influence of the reaction time on the crystal structure of Na−P1 zeolite obtained from coal fly ash microspheres. Microporous and Mesoporous Materials, 266, 102–108

    Article  CAS  Google Scholar 

  • Kunecki P, Panek R, Wdowin M, Bień T, Franus W (2021). Influence of the fly ash fraction after grinding process on the hydrothermal synthesis efficiency of Na−A, Na−P1, Na−X and sodalite zeolite types. International Journal of Coal Science & Technology, 8(2): 291–311

    Article  CAS  Google Scholar 

  • Kunecki P, Wdowin M, Hanc E (2023). Fly ash-derived zeolites and their sorption abilities in relation to elemental mercury in a simulated gas stream. Journal of Cleaner Production, 391: 136181

    Article  CAS  Google Scholar 

  • Kwon E H, An H, Park M B, Kim M, Park Y D (2021). Conjugated polymer–zeolite hybrids for robust gas sensors: effect of zeolite surface area on NO2 sensing ability. Chemical Engineering Journal, 420: 129588–129591

    Article  CAS  Google Scholar 

  • Larosa J L, Kwan S, Grutzeck M W (1992). Zeolite formation in class F fly ash blended cement pastes. Journal of the American Ceramic Society, 75(6): 1574–1580

    Article  CAS  Google Scholar 

  • Lou Y, Ma J, Hu W D, Dai Q G, Wang L, Zhan W C, Guo Y L, Cao X M, Guo Y, Hu P, Lu G Z, et al. (2016). Low-temperature methane combustion over Pd/H-ZSM-5: active Pd sites with specific electronic properties modulated by acidic sites of H-ZSM-5. ACS Catalysis, 6(12): 8127–8139

    Article  CAS  Google Scholar 

  • Ma H C, Yao Q T, Fu Y H, Ma C, Dong X L (2010). Synthesis of zeolite of type a from bentonite by alkali fusion activation using Na2CO3. Industrial & Engineering Chemistry Research, 49(2): 454–458

    Article  CAS  Google Scholar 

  • Ma Y A, Yan C J, Alshameri A, Qiu X M, Zhou C Y, Li D (2014). Synthesis and characterization of 13X zeolite from low-grade natural kaolin. Advanced Powder Technology, 25(2): 495–499

    Article  CAS  Google Scholar 

  • Maiti S, Raj H, Bisht R S, Minocha A K, Panigrahi S K, Alexander S, Sameer, Singh M (2018). X-ray photoelectron spectroscopy study on adsorption property of harmful air pollutants on zeolite prepared from fly ash. Materials Research Express, 5(8): 085507

    Article  Google Scholar 

  • Makgabutlane B, Nthunya L N, Nxumalo E N, Musyoka N M, Mhlanga S D (2020). Microwave irradiation-assisted synthesis of zeolites from coal fly ash: an optimization study for a sustainable and efficient production process. ACS Omega, 5(39): 25000–25008

    Article  CAS  Google Scholar 

  • Meng X, Xiao F S (2014). Green routes for synthesis of zeolites. Chemical Reviews, 114(2): 1521–1543

    Article  CAS  Google Scholar 

  • Missengue R N M, Losch P, Sedres G, Musyoka N M, Fatoba O O, Louis B, Pale P, Petrik L F (2017). Transformation of South African coal fly ash into ZSM-5 zeolite and its application as an MTO catalyst. Comptes Rendus Chimie, 20(1): 78–86

    Article  CAS  Google Scholar 

  • Mohebbi M, Rajabipour F, Madadian E (2022). A framework for identifying the host phases in Coal-derived fly ash. Fuel, 314: 122806

    Article  CAS  Google Scholar 

  • Molina A, Poole C (2004). A comparative study using two methods to produce zeolites from fly ash. Minerals Engineering, 17, 167–173

    Article  CAS  Google Scholar 

  • Monasterio-Guillot L, Alvarez-Lloret P, Ibañez-Velasco A, Fernandez-Martinez A, Ruiz-Agudo E, Rodriguez-Navarro C (2020). CO2 sequestration and simultaneous zeolite production by carbonation of coal fly ash: impact on the trapping of toxic elements. Journal of CO2 Utilization, 40, 101263.

    Article  CAS  Google Scholar 

  • Mondragon F, Rincon F, Sierra L, Escobar J, Ramirez J, Fernandez J (1990). New perspectives for coal ash utilization: synthesis of zeolitic materials. Fuel, 69, 263–266

    Article  CAS  Google Scholar 

  • Moreno N, Querol X, Ayora C, Pereira C F, Janssen-Jurkovicová M (2001). Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters. Environmental Science & Technology, 35(17): 3526–3534

    Article  CAS  Google Scholar 

  • Moriyama R, Takeda S, Onozaki M, Katayama Y, Shiota K, Fukuda T, Sugihara H, Tani Y (2005). Large-scale synthesis of artificial zeolite from coal fly ash with a small charge of alkaline solution. Fuel, 84, 1455–1461

    CAS  Google Scholar 

  • Murayama N, Takahashi T, Shuku K, Lee H, Shibata J (2008). Effect of reaction temperature on hydrothermal syntheses of potassium type zeolites from coal fly ash. International Journal of Mineral Processing, 87, 129–133

    Article  CAS  Google Scholar 

  • Murayama N, Yamamoto H, Shibata J (2002). Mechanism of zeolite synthesis from coal fly ash by alkali hydrothermal reaction. International Journal of Mineral Processing, 64(1): 1–17

    Article  CAS  Google Scholar 

  • Muriithia G N, Petrik L F, Doucet F J (2020). Synthesis, characterisation and CO2 adsorption potential of NaA and NaX zeolites and hydrotalcite obtained from the same coal fly ash. Journal of CO2 Utilization, 36, 220–230

    Article  Google Scholar 

  • Musyoka N M, Petrik L F, Fatoba O O, Hums E (2013). Synthesis of zeolites from coal fly ash using mine waters. Minerals Engineering, 53: 9–15

    Article  CAS  Google Scholar 

  • Musyoka N M, Petrik L F, Hums E, Baser H, Schwieger W (2012). In situ ultrasonic monitoring of zeolite A crystallization from coal fly ash. Catalysis Today, 190(1): 38–46

    Article  CAS  Google Scholar 

  • Nada M H, Larsen S C (2017). Insight into seed-assisted template free synthesis of ZSM-5 zeolites. Microporous and Mesoporous Materials, 239: 444–452

    Article  CAS  Google Scholar 

  • Nguyen M, Tanner C (1998). Ammonium removal from wastewaters using natural New Zealand zeolites. New Zealand Journal of Agricultural Research, 41(3): 427–446

    Article  CAS  Google Scholar 

  • Ojumu T V, Du Plessis P W, Petrik L F (2016). Synthesis of zeolite A from coal fly ash using ultrasonic treatment-A replacement for fusion step. Ultrasonics Sonochemistry, 31: 342–349

    Article  CAS  Google Scholar 

  • Panek R, Wdowin M, Bandura L, Wisła-Walsh E, Gara P, Franus W (2017). Changes in the textural parameters of fly ash-derived Na−P1 zeolite during compaction processes. Mineralogia, 48(1–4): 3–22

    Article  Google Scholar 

  • Park J, Hwang Y, Bae S (2019). Nitrate reduction on surface of Pd/Sn catalysts supported by coal fly ash-derived zeolites. Journal of Hazardous Materials, 374: 309–318

    Article  CAS  Google Scholar 

  • Park M, Choi C L, Lim W T, Kim M C, Choi J, Heo N H (2000). Molten-salt method for the synthesis of zeolitic materials. Characterization of zeolitic materials. Microporous and Mesoporous Materials, 37(1–2): 91–98

    Article  CAS  Google Scholar 

  • Pedrolo D R S, Quines L K D M, Souza G D, Marcilio N R (2017). Synthesis of zeolites from Brazilian coal ash and its application in SO2 adsorption. Journal of Environmental Chemical Engineer, 5, 4788–4794

    Article  CAS  Google Scholar 

  • Popova M, Boycheva S, Lazarova H, Zgureva D, Lázár K, Szegedi Á (2020). VOC oxidation and CO2 adsorption on dual adsorption/catalytic system based on fly ash zeolites. Catalysis Today, 357: 518–525

    Article  CAS  Google Scholar 

  • Qin L B, Song J, Liang Y S, Zhao B, Chen G, Han J (2021). Preparation of Fe and Ca enriched sorbents derived from coal fly ash for arsenic capture from flue gas. Energy & Fuels, 35(14): 11203–11209

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Lopez-Soler A, Plana F, Andres J M, Juan R, Ferrer P, Ruiz C R (1997). A fast method for recycling fly ash: microwave-assisted zeolite synthesis. Environmental Science & Technology, 31(9): 2527–2533

    Article  CAS  Google Scholar 

  • Querol X, Moreno N, Umaña J C, Juan R, Hernández S, Fernandez-Pereira C, Ayora C, Janssen M, García-Martínez J, Linares-Solano A, et al. (2002). Application of zeolitic material synthesised from fly ash to the decontamination of waste water and flue gas. Journal of Chemical Technology and Biotechnology, 77, 292–298

    Article  CAS  Google Scholar 

  • Querol X, Umaña J C, Plana F, Alastuey A, Lopez-Soler A, Medinaceli A, Domingo M J, Garcia-Rojo E (2001). Synthesis of zeolites from fly ash at pilot plant scale, Examples of potential applications. Fuel. 80, 857–865

    Article  CAS  Google Scholar 

  • Radziemska M, Mazur Z (2016). Content of selected heavy metals in Ni-contaminated soil following the application of halloysite and zeolite. Journal of Ecological Engineering, 17(3): 125–133

    Article  Google Scholar 

  • Rajendran S, Priya T A K, Khoo K S, Hoang T K A T K A, Ng H, Munawaroh H S H, Karaman C, Orooji Y, Show P L (2022). A critical review on various remediation approaches for heavy metal contaminants removal from contaminated soils. Chemosphere, 287: 132369

    Article  CAS  Google Scholar 

  • Rayalu S S, Udhoji J S, Munshi K N, Hasan M Z (2001). Highly crystalline zeolite-Aa from fly ash of bituminous and lignite coal combustion. Journal of Hazardous Materials, 88(1): 107–121

    Article  CAS  Google Scholar 

  • Remenárová L, Pipíška M, Florková E, Horník M, Rozložník M, Augustín J (2014). Zeolites from coal fly ash as efficient sorbents for cadmium ions. Clean Technologies and Environmental Policy, 16(8): 1551–1564

    Article  Google Scholar 

  • Ren L M, Wu Q M, Yang C G, Zhu L F, Li C J, Zhang P L, Zhang H Y, Meng X J, Xiao F S (2012). Solvent-free synthesis of zeolites from solid raw materials. Journal of the American Chemical Society, 134(37): 15173–15176

    Article  CAS  Google Scholar 

  • Ren X Y, Liu S J, Qu R Y, Xiao L F, Hu P, Song H, Wu W H, Zheng C H, Wu X C, Gao X (2020). Synthesis and characterization of single-phase submicron zeolite Y from coal fly ash and its potential application for acetone adsorption. Microporous and Mesoporous Materials, 295: 109940

    Article  CAS  Google Scholar 

  • Sahoo P K, Kim K, Powell M A, Equeenuddin S M (2016). Recovery of metals and other beneficial products from coal fly ash: a sustainable approach for fly ash management. International Journal of Coal Science & Technology, 3(3): 267–283

    Article  CAS  Google Scholar 

  • Shi D D, Haw K G, Kouvatas C, Tang L X, Zhang Y Y, Fang Q R, Qiu S L, Valtchev V (2020). Expanding the synthesis field of high-silica zeolites. Angewandte Chemie International Edition, 59(44): 19576–19581

    Article  CAS  Google Scholar 

  • Sivalingam S, Sen S (2018). Optimization of synthesis parameters and characterization of coal fly ash derived microporous zeolite X. Applied Surface Science, 455: 903–910

    Article  CAS  Google Scholar 

  • Slangen P M, Jansen J C, Van Bekkum H (1997). The effect of ageing on the microwave synthesis of zeolite NaA. Microporous and Mesoporous Materials, 9(5–6): 259–265

    Article  CAS  Google Scholar 

  • Soe J T, Kim S S, Lee Y R, Ahn J W, Ahn W S (2016). CO2 capture and Ca2+ exchange using zeolite A and 13X prepared from power plant fly ash. Bulletin of the Korean Chemical Society, 37, 490–493

    Article  CAS  Google Scholar 

  • Srinivasan A, Grutzeck M W (1999). The adsorption of SO2 by zeolites synthesized from fly ash. Environmental Science & Technology, 33(9): 1464–1469

    Article  CAS  Google Scholar 

  • Steenbruggen G, Hollman G G (1998). The synthesis of zeolites from fly ash and the properties of the zeolite products. Journal of Geochemical Exploration, 62, 305–309

    Article  CAS  Google Scholar 

  • Stoy L, Diaz V, Huang C H (2021). Preferential recovery of rare-earth elements from coal fly ash using a recyclable ionic liquid. Environmental Science & Technology, 55(13): 9209–9220

    Article  CAS  Google Scholar 

  • Sui Y, Wu D, Zhang D, Zheng X, Hu Z, Kong H (2008). Factors affecting the sorption of trivalent chromium by zeolite synthesized from coal fly ash. Journal of Colloid and Interface Science, 322(1): 13–21

    Article  CAS  Google Scholar 

  • Tanaka H, Eguchi H, Fujimoto S, Hino R (2006). Two-step process for synthesis of a single phase Na−A zeolite from coal fly ash by dialysis. Fuel, 85(10–11): 1329–1334

    Article  CAS  Google Scholar 

  • Tanaka H, Fujii A (2009). Effect of stirring on the dissolution of coal fly ash and synthesis of pure-form Na−A and -X zeolites by two-step process. Advanced Powder Technology, 20(5): 473–479

    Article  CAS  Google Scholar 

  • Tanaka H, Fujimoto S, Fujii A, Hino R, Kawazoe T (2008). Microwave assisted two-step process for rapid synthesis of Na−A zeolite from coal fly ash. Industrial & Engineering Chemistry Research, 47(1): 226–230

    Article  CAS  Google Scholar 

  • Tanaka H, Miyagawa A, Eguchi H, Hino R (2004). Synthesis of a single-phase Na−A zeolite from coal fly ash by dialysis. Industrial & Engineering Chemistry Research, 43(19): 6090–6094

    Article  CAS  Google Scholar 

  • Tauanov Z, Shah D, Inglezakis V, Jamwal P K (2018). Hydrothermal synthesis of zeolite production from coal fly ash: a heuristic approach and its optimization for system identification of conversion. Journal of Cleaner Production, 182: 616–623

    Article  CAS  Google Scholar 

  • Tauanov Z, Shah D, Itskos G, Inglezakis V (2017). Optimized production of coal fly ash derived synthetic zeolites for mercury removal from wastewater. IOP Conference Series. Materials Science and Engineering, 230: 012044

    Google Scholar 

  • Terzano R, Spagnuolo M, Medici L, Dorriné W, Janssens K, Ruggiero P (2007). Microscopic single particle characterization of zeolites synthesized in a soil polluted by copper or cadmium and treated with coal fly ash. Applied Clay Science, 35(1–2): 128–138

    Article  CAS  Google Scholar 

  • Vassilev S V, Menendez R, Alvarez D, Diaz-Somoano M, Martinez-Tarazona M R (2003). Phase-mineral and chemical composition of coal fly ashes as a basis for their multicomponent utilization, characterization of feed coals and fly ashes. Fuel, 82(14): 1793–1811

    Article  CAS  Google Scholar 

  • Vassilev S V, Vassileva C G (2005). Methods for characterization of composition of fly ashes from coal-fired power stations: a critical overview. Energy & Fuels, 19(3): 1084–1098

    Article  CAS  Google Scholar 

  • Verrecchia G, Cafiero L, de Caprariis B, Dell’Era A, Pettiti I, Tuffi R, Scarsella M (2020). Study of the parameters of zeolites synthesis from coal fly ash in order to optimize their CO2 adsorption. Fuel, 276: 118041

    Article  CAS  Google Scholar 

  • Visa M, Chelaru A M (2014). Hydrothermally modified fly ash for heavy metals and dyes removal in advanced wastewater treatment. Applied Surface Science, 303, 14–22

    Article  CAS  Google Scholar 

  • Visa M, Isac L, Duta A (2012). Fly ash adsorbents for multi-cation wastewater treatment. Applied Surface Science, 258(17): 6345–6352

    Article  CAS  Google Scholar 

  • Wang C, Li J, Sun X, Wang L, Sun X (2009). Evaluation of zeolites synthesized from fly ash as potential adsorbents for wastewater containing heavy metals. Journal of Environmental Sciences-China, 21, 127–136

    Article  Google Scholar 

  • Wang C, Xu G G, Gu X Y, Gao Y H, Zhao P (2021). High value-added applications of coal fly ash in the form of porous materials: a review. Ceramics International, 47(16): 22302–22315

    Article  CAS  Google Scholar 

  • Wang J C, Li D K, Ju F L, Han L N, Chang LP, Bao W R (2015). Supercritical hydrothermal synthesis of zeolites from coal fly ash for mercury removal from coal derived gas. Fuel Processing Technology, 136, 96–105

    Article  CAS  Google Scholar 

  • Wdowin M, Franus M, Panek R, Badura L, Franus W (2014). The conversion technology of fly ash into zeolites. Clean Technologies and Environmental Policy, 16, 1217–1223

    Article  CAS  Google Scholar 

  • Wdowin M, Macherzynski M, Panek R, Gorecki J, Franus W (2015). Investigation of the sorption of mercury vapour from exhaust gas by an Ag-X zeolite. Clay Minerals, 50(1): 31–40

    Article  CAS  Google Scholar 

  • Wu D, Sui Y, He S, Wang X, Li C, Kong H (2008). Removal of trivalent chromium from aqueous solution by zeolite synthesized from coal fly ash. Journal of Hazardous Materials, 155(3): 415–423

    Article  CAS  Google Scholar 

  • Wu Q, Wang X, Qi G, Guo Q, Pan S, Meng X, Xu J, Deng F, Fan F, Feng Z, et al. (2014). Sustainable synthesis of zeolites without addition of both organotemplates and solvents. Journal of the American Chemical Society, 136(10): 4019–4025

    Article  CAS  Google Scholar 

  • Xie J, Wang Z, Wu D Y, Zhang Z J, Kong H N (2013). Synthesis of zeolite/aluminum oxide hydrate from coal fly ash: a new type of adsorbent for simultaneous removal of cationic and anionic pollutants. Industrial & Engineering Chemistry Research, 52(42): 14890–14897

    Article  CAS  Google Scholar 

  • Xu M X, Wu Y C, Zhang P X, Liu Z S, Hu Z, Lu Q (2022). Green and moderate activation of coal fly ash and its application in selective catalytic reduction of NO with NH3. Environmental Science & Technology, 56(4): 2582–2592

    Article  CAS  Google Scholar 

  • Yan J L, Chang B J (2017). The development and optimization of co-production process of extracting alumina and 4A zeolite from high alumina fly ash. Light Metals. 4, 9–12

    Google Scholar 

  • Yang L, Qian X, Yuan P, Bai H, Miki T, Men F X, Li H, Nagasaka T (2019a). Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3. Journal of Cleaner Production, 212: 250–260

    Article  CAS  Google Scholar 

  • Yang T, Han C, Liu H, Yang L, Liu D, Tang J, Luo Y (2019b). Synthesis of Na−X zeolite from low aluminum coal fly ash: characterization and high efficient As(V) removal. Advanced Powder Technology, 30(1): 199–206

    Article  CAS  Google Scholar 

  • Yao Z T, Ji X S, Sarker P K, Tang J H, Ge L Q, Xia M S, Xi Y Q (2015). A comprehensive review on the applications of coal fly ash. Earth-Science Reviews, 141: 105–121

    Article  Google Scholar 

  • Yu Y Q, Li X L, Zou X L, Zhu X B (2014) Effect of seawater salinity on the synthesis of zeolite from coal fly ash. Frontiers of Environmental Science & Engineering, 8(1): 54–61

    Article  CAS  Google Scholar 

  • Ye Y P, Zeng X Q, Qian W L, Wang M W (2008). Synthesis of pure zeolites from supersaturated silicon and aluminum alkali extracts from fused coal fly ash. Fuel, 87, 1880–1886

    Article  CAS  Google Scholar 

  • Zaheer A (2022). Carbonaceous adsorbent from waste oil fly ash: surface treatments and hydrogen sulfide adsorption potential. Chemicke Zvesti, 76(8): 5145–5158

    Google Scholar 

  • Zhang P, Li S Q, Guo P H, Zhang C Q (2020a). Seed-assisted, OSDA-free, Solvent-free synthesis of ZSM-5 zeolite from iron ore tailings. Waste and Biomass Valorization, 11(8): 4381–4391

    Article  CAS  Google Scholar 

  • Zhang P, Li S Q, Guo P H, Zhao X (2020b). Synthesis of ZSM-5 microspheres made of nanocrystals from iron ore tailings by the solid-phase conversion method. Langmuir, 36(22): 6160–6168

    Article  CAS  Google Scholar 

  • Zhang P, Li S Q, Zhang C Q (2019). Solvent-free synthesis of nano-cancrinite from rice husk ash. Biomass Conversion and Biorefinery, 9(3): 641–649

    Article  CAS  Google Scholar 

  • Zhang P, Wang L, Ren L, Zhu L, Sun Q, Zhang J, Meng X, Xiao F S (2011a). “Solvent-free” synthesis of thermally stable and hierarchically porous aluminophosphates (SF-APOs) and heteroatom-substituted aluminophosphates (SF-MAPOs). Journal of Materials Chemistry, 21(32): 12026–12033

    Article  CAS  Google Scholar 

  • Zhang X, He X, Li J, Davi N, Chen Z, Cui M, Chen W, Li N (2011b). Effects of sodium carbonate and sodium chloride additives on alkaline fusion of coal fly ash. Journal of Central South University, 42: 1220–1225

    Google Scholar 

  • Zhang Y, Dong J, Guo F, Shao Z, Wu J (2018). Zeolite synthesized from coal fly ash produced by a gasification process for Ni2+ removal from water. Minerals, 8, 1–14

    Article  Google Scholar 

  • Zhang Y N, Han H J, Wang X H, Zhang M, Chen Y G, Zhai C X, Song H, Deng J T, Sun J, Zhang C L (2021). Utilization of NaP zeolite synthesized with different silicon species and NaAlO2 from coal fly ash for the adsorption of Rhodamine B. Journal of Hazardous Materials, 9: 6894–6911

    Google Scholar 

  • Zhang Z H, Xiao Y F, Wang B D, Sun Q, Liu H D (2017). Waste is a misplayed resource: synthesis of zeolites from fly ash for CO2 capture. Energy Procedia, 114, 2537–2544

    Article  CAS  Google Scholar 

  • Zhao H, Huang X, Liu F, Hu X, Zhao X, Wang L, Gao P, Ji P (2020). A two-year field study of using a new material for remediation of cadmium contaminated paddy soil. Environment and Pollution, 263: 114614

    Article  CAS  Google Scholar 

  • Zhao M Q, Ma X Q, Chen D J, Liao Y N (2022). Preparation of honeycomb-structured activated carbon-zeolite composites from modified fly ash and the adsorptive removal of Pb(II). ACS Omega, 7, 9684–9689

    Article  CAS  Google Scholar 

  • Zhao Y X, Wang J C, Han L N, Chang L P, Bao W R (2016). Synthesis of zeolite from fly ash by alkali fusion-supercritical hydrothermal method. Modern Chemical Industry, 36: 141–145

    Google Scholar 

  • Zhao X L, Wang X J, Lou T (2021). Preparation of fibrous chitosan/sodium alginate composite foams for the adsorption of cationic and anionic dyes. Journal of Hazardous Materials, 403(124054): 1–10

    Google Scholar 

  • Zheng X J, Chen M, Wang J F, Liu Y, Liao Y Q, Liu Y C (2020). Assessment of zeolite, biochar, and their combination for stabilization of multimetal-contaminated soil. ACS Omega, 5(42): 27374–27382

    Article  CAS  Google Scholar 

  • Zhou T X, Wang B D, Dai Z D, Jiang X J, Wang Y (2021). Organotemplate-free synthesis of MOR zeolite from coal fly ash through simultaneously effective extraction of Si and Al. Microporous and Mesoporous Materials, 314: 110872

    Article  CAS  Google Scholar 

  • Zhu L, Ji J Y, Wang S L, Xu C X, Yang K, Xu M (2018). Removal of Pb(II) from wastewater using Al2O3−NaA zeolite composite hollow fiber membranes synthesized from solid waste coal fly ash. Chemosphere, 206: 278–284

    Article  CAS  Google Scholar 

  • Zhu T, Zhang X, Han Y, Liu T, Wang B, Zhang Z (2019). Preparation of zeolite X by the aluminum residue from coal fly ash for the adsorption of volatile organic compounds. Frontiers in Chemistry, 7, 1–8

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51904278), the Fundamental Research Program of Shanxi Province (No. 202103021223277), the Taiyuan University of Science and Technology Doctoral Research Fund (No. 20212025), and the Natural Science Foundation of Shanxi Province (No. 20210302123218).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Zhang.

Additional information

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Highlights

• Up-to-date information on the preparation of zeolite from CFA were summarized.

• The applications of CFA zeolites in environmental protection field were reviewed.

• The feasibility analysis of industrial production of CFA zeolites were discussed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Zhang, P., Wang, Y. et al. Research progress on synthesis of zeolites from coal fly ash and environmental applications. Front. Environ. Sci. Eng. 17, 149 (2023). https://doi.org/10.1007/s11783-023-1749-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11783-023-1749-2

Keywords

Navigation