[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Permutation Patterns and Cell Decompositions

  • Published:
Mathematics in Computer Science Aims and scope Submit manuscript

Abstract

Let \(\mathcal {S}_n\) be the symmetric group of all permutations of n letters, and let \(\mathcal {S}_n(T)\) be the set of those permutations which avoid a given set of patterns T. In the present paper, we consider a \(\tau \)-reduction argument where \(\tau \in \mathcal {S}_m\) is given and all patterns in T are assumed to contain \(\tau \). For these situations, cell decompositions are introduced and studied. We describe an observation which allows to reduce the determination of the generating function for \(|\mathcal {S}_n(T)|\) to the determination of a set of generating functions for simpler problems. The usefulness of this approach is demonstrated by several examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abe, H., Billey, S.: Consequences of the Lakshmibai–Sandhya theorem: the ubiquity of permutation patterns in Schubert calculus and related geometry. Adv. Stud. Pure Math. 71, 1–52 (2016)

    MathSciNet  MATH  Google Scholar 

  2. Albert, M.H., Linton, S., Rus̆kuc, N.: The insertion encoding of permutations. Electron. J. Comb. 12, 47 (2005)

    MathSciNet  MATH  Google Scholar 

  3. Alland, T., Richmond, E.: Pattern avoidance and fiber bundle structures on Schubert varieties. J. Comb. Ser. A 154, 533–550 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Callan, D., Mansour, T., Shattuck, M.: Wilf classification of triples of 4-letter patterns I. Discrete Math. Theor. Comput. Sci. 19, 5 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Callan, D., Mansour, T., Shattuck, M.: Wilf classification of triples of 4-letter patterns II. Discrete Math. Theor. Comput. Sci. 19, 6 (2017)

    MathSciNet  MATH  Google Scholar 

  6. Knuth, D.E.: The Art of Computer Programming, 3rd edn. Addison Wesley, Reading (1997)

    MATH  Google Scholar 

  7. Kremer, D., Shiu, W.C.: Finite transition matrices for permutations avoiding pairs of length four patterns. Discrete Math. 268, 171–183 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Le, I.: Wilf classes of pairs of permutations of length 4. Electron. J. Comb. 12, 25 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Mansour, T., Schork, M.: Wilf classification of subsets of four letter patterns. J. Comb. Number Theory 8, 1–129 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Mansour, T., Schork, M.: Wilf classification of subsets of eight and nine four-letter patterns. J. Comb. Number Theory 8, 257–283 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Mansour, T., Schork, M.: Wilf classification of subsets of six and seven four-letter patterns. J. Comb. Number Theory 9, 169–213 (2017)

    MathSciNet  MATH  Google Scholar 

  12. Mansour, T., Schork, M.: Wilf classification of subsets of five four-letter patterns. (in preparation)

  13. Simion, R., Schmidt, F.W.: Restricted permutations. Eur. J. Comb. 6, 383–406 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. Stankova, Z.E.: Forbidden subsequences. Discrete Math. 132, 291–316 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Stankova, Z.E.: Classification of forbidden subsequences of length four. Eur. J. Comb. 17, 501–517 (1996)

    Article  MATH  Google Scholar 

  16. Úlfarsson, H., Woo, A.: Which Schubert varieties are local complete intersections? Proc. Lond. Math. Soc. 107, 1004–1052 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Vatter, V.: Finitely labeled generating trees and restricted permutations. J. Symb. Comput. 41, 559–572 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vatter, V.: Finding regular insertion encodings for permutation classes. J. Symb. Comput. 47, 259–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. West, J.: Generating trees and the Catalan and Schröder numbers. Discrete Math. 146, 247–262 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toufik Mansour.

Additional information

This paper is part of the ACA 2017 Jerusalem Special Issue.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, T., Schork, M. Permutation Patterns and Cell Decompositions. Math.Comput.Sci. 13, 169–183 (2019). https://doi.org/10.1007/s11786-018-0353-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11786-018-0353-5

Keywords

Mathematics Subject Classification

Navigation