[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Electrospinning of polycarbonate urethane biomaterials

  • Research Article
  • Published:
Frontiers of Chemical Science and Engineering Aims and scope Submit manuscript

Abstract

Polycarbonate urethane (PCU) nano-fibers were fabricated via electrospinning using N,N-dimethylformamide (DMF) and tetrahydrofuran (THF) as the mixed solvent. The effect of volume ratios of DMF and THF in the mixed solvent on the fiber structures was investigated. The results show that nano-fibers with a narrow diameter distribution and a few defects were obtained when mixed solvent with the appropriate volume ratio of DMF and THF as 1:1. When the proportion of DMF was more than 75%in the mixed solvent, it was easy to form many beaded fibers. The applied voltage in the electrospinning process has a significant influence on the morphology of fibers. When the electric voltage was set between 22 and 32 kV, the average diameters of the fibers were found between 420 and 570 nm. Scanning electron microscopy (SEM) images showed that fiber diameter and structural morphology of the electrospun PCU membranes are a function of the polymer solution concentration. When the concentration of PCU solution was 6.0 wt-%, a beaded-fiber microstructure was obtained. With increasing the concentration of PCU solutions above 6.0 wt-%, beaded fiber decreased and finally disappeared. However, when the PCU concentration was over 14.0 wt-%, the average diameter of fibers became large, closed to 2 μm, because of the high solution viscosity. The average diameter of nanofibers increased linearly with increasing the volume flow rate of the PCU solution (10.0 wt-%)when the applied voltage was 24 kV. The results show that the morphology of PCU fibers could be controlled by electrospinning parameters, such as solution concentration, electric voltage and flow rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Huang Z M, Zhang Y Z, Kotaki M, Ramakrishna S. A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Composites Science and Technology, 2003, 63(15): 2223–2253

    Article  CAS  Google Scholar 

  2. Park H S, Park Y O. Filtration properties of electrospun ultrafine fiber webs. Korean Journal of Chemical Engineering, 2005, 22(1): 165–172

    Article  CAS  Google Scholar 

  3. Huang L, Nagapudi K, Apkarian R P, Chaikof E L. Engineered collagen-PEO nanofibers and fabrics. J Biomater Sci Polym Ed, 2001, 12(9): 979–993

    Article  CAS  Google Scholar 

  4. Wang X, Drew C, Lee S H, Senecal K J, Kumar J, Samuelson L A. Electrospun nanofibrous membranes for highly sensitive optical sensors. Nano Letters, 2002, 2(11): 1273–1275

    Article  CAS  Google Scholar 

  5. Li W J, Laurencin C T, Caterson E J, Tuan R S, Ko F K. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. Journal of Biomedical Materials Research, 2002, 60(4): 613–621

    Article  CAS  Google Scholar 

  6. He Q, Cui Y, Ai S, Tian Y, Li J. Self-assembly of composite nanotubes and their applications. Current Opinion in Colloid & Interface Science, 2009, 14(2): 115–125

    Article  CAS  Google Scholar 

  7. Buttafoco L, Kolkman N G, Engbers-Buijtenhuijs P, Poot A A, Dijkstra P J, Vermes I, Feijen J. Electrospinning of collagen and elastin for tissue engineering applications. Biomaterials, 2006, 27(5): 724–734

    Article  CAS  Google Scholar 

  8. Sun B, Duan B, Yuan X. Preparation of core/shell PVP/PLA ultrafine fibers by coaxial electrospinning. Journal of Applied Polymer Science, 2006, 102(1): 39–45

    Article  CAS  Google Scholar 

  9. Yang F, Both S K, Yang X, Walboomers X F, Jansen J A. Development of an electrospun nano-apatite/PCL composite membrane for GTR/GBR application. Acta Biomaterialia, 2009, 5(9): 3295–3304

    Article  CAS  Google Scholar 

  10. Duling R R, Dupaix R B, Katsube N, Lannutti J. Mechanical characterization of electrospun polycaprolactone (PCL): a potential scaffold for tissue engineering. Journal of Biomechanical Engineering, 2008, 130(1): 011006–011018

    Article  Google Scholar 

  11. Duan Y Y, Jia J, Wang S H, Yan W, Jin L, Wang Z Y. Preparation of antimicrobial poly(ε-caprolactone) electrospun nanofibers containing silver-loaded zirconium phosphate nanoparticles. Journal of Applied Polymer Science, 2007, 106(2): 1208–1214

    Article  CAS  Google Scholar 

  12. You Y, Min B M, Lee S J, Lee T S, Park W H. In vitro degradation behavior of electrospun polyglycolide, polylactide, and poly(lactide-co-glycolide). Journal of Applied Polymer Science, 2005, 95(2): 193–200

    Article  CAS  Google Scholar 

  13. Sell S A, Bowlin G L. Creating small diameter bioresorbable vascular grafts through electrospinning. Journal of Materials Chemistry, 2008, 18(3): 260–263

    Article  CAS  Google Scholar 

  14. Ulrich H. Introduction to Industrial Polymers. New York: Hanser Publishers, 1993

    Google Scholar 

  15. Okoshi T, Soldani G, Goddard M, Galletti PM. Very small-diameter polyurethane vascular prostheses with rapid endothelialization for coronary artery bypass grafting. J Thorac Cardiovasc Surg, 1993, 105(5): 791–795

    CAS  Google Scholar 

  16. Lee S. Multifunctionality of layered fabric systems based on electrospun polyurethane/zinc oxide nanocomposite fibers. Journal of Applied Polymer Science, 2009, 114(6): 3652–3658

    Article  CAS  Google Scholar 

  17. Peng P, Chen Y Z, Gao Y F, Yu J, Guo Z X. Phase morphology and mechanical properties of the electrospun polyoxymethylene/polyurethane blend fiber mats. Journal of Polymer Science. Part B, Polymer Physics, 2009, 47(19): 1853–1859

    Article  CAS  Google Scholar 

  18. Cha D I, Kim H Y, Lee K H, Jung Y C, Cho J W, Chun B C. Electrospun nonwovens of shape-memory polyurethane block copolymers. Journal of Applied Polymer Science, 2005, 96(2): 460–465

    Article  CAS  Google Scholar 

  19. Guan J J, Fujimoto K L, Sacks M S, Wagner W R. Preparation and characterization of highly porous, biodegradable polyurethane scaffolds for soft tissue applications. Biomaterials, 2005, 26(18): 3961–3971

    Article  CAS  Google Scholar 

  20. McKee M G, Park T, Unal S, Yilgor I, Long T E. Electrospinning of linear and highly branched segmented poly(urethane urea)s. Polymer, 2005, 46(7): 2011–2015

    Article  CAS  Google Scholar 

  21. Marois Y, Pâris E, Zhang Z, Doillon C J, King M W, Guidoin R G. Vascugraft® microporous polyesterurethane arterial prosthesis as a thoraco-abdominal bypass in dogs. Biomaterials, 1996, 17(13): 1289–1300

    Article  CAS  Google Scholar 

  22. Doi K, Matsuda T. Significance of porosity and compliance of microporous, polyurethane-based microarterial vessel on neoarterial wall regeneration. Journal of Biomedical Materials Research. Part A, 1997, 37(4): 573–584

    Article  CAS  Google Scholar 

  23. Demir M M, Yilgor I, Yilgor E, Erman B. Electrospinning of polyurethane fibers. Polymer, 2002, 43(11): 3303–3309

    Article  CAS  Google Scholar 

  24. Chen S, Hou H, Hu P, Wendorff J H, Greiner A, Agarwal S. Polymeric Nanosprings by Bicomponent Electrospinning. Macromolecular Materials and Engineering, 2009, 294(4): 265–271

    Article  CAS  Google Scholar 

  25. Badami A S, Kreke M R, Thompson M S, Riffle J S, Goldstein A S. Effect of fiber diameter on spreading, proliferation, and differentiation of osteoblastic cells on electrospun poly(lactic acid) substrates. Biomaterials, 2006, 27(4): 596–606

    Article  CAS  Google Scholar 

  26. Lowery J L, Datta N, Rutledge G C. Effect of fiber diameter, pore size and seeding method on growth of human dermal fibroblasts in electrospun poly(e-caprolactone) fibrous mats. Biomaterials, 2010, 31(3): 491–504

    Article  CAS  Google Scholar 

  27. Pinchuk L. A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of ‘biostable’ polyurethanes. Journal of Biomaterials Science. Polymer Edition, 1995, 6(3): 225–267

    Article  Google Scholar 

  28. Thomas V, Kumari T V, Jayabalan M. In vitro studies on the effect of physical cross-linking on the biological performance of aliphatic poly(urethane urea) for blood contact applications. Biomacromolecules, 2001, 2(2): 588–596

    Article  CAS  Google Scholar 

  29. Zhang Z, Marois Y, Guidoin R G, Bull P, Marois M, How T, Laroche G, King MW. Vascugraft® polyurethane arterial prosthesis as femoro-popliteal and femoro-peroneal bypasses in humans: pathological, structural and chemical analyses of four excised grafts. Biomaterials, 1997, 18(2): 113–124

    Article  CAS  Google Scholar 

  30. Yarin A L. Free Liquid Jets and Films: Hydrodynamics and Rheology. New York: Longman, 1993

    Google Scholar 

  31. Yuan X, Zhang Y, Dong C, Sheng J. Morphology of ultrafine polysulfone fibers prepared by electrospinning. Polymer International, 2004, 53(11): 1704–1710

    Article  CAS  Google Scholar 

  32. Chang K H, Lin H L. Electrospin of polysulfone in N,N’-dimethyl acetamide solutions. Journal of Polymer Research, 2009, 16(6): 611–622

    Article  CAS  Google Scholar 

  33. Lee J S, Choi K H, Ghim H D, Kim S S, Chun D H, Kim H Y, Lyoo W S. Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. Journal of Applied Polymer Science, 2004, 93(4): 1638–1646

    Article  CAS  Google Scholar 

  34. Zong X, Kim K, Fang D, Ran S, Hsiao B S, Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer, 2002, 43(16): 4403–4412

    Article  CAS  Google Scholar 

  35. Shenoy S L, Bates W D, Frisch H L, Wnek G E. Role of chain entanglements on fiber formation during electrospinning of polymer solutions: good solvent, non-specific polymer-polymer interaction limit. Polymer, 2005, 46(10): 3372–3384

    Article  CAS  Google Scholar 

  36. Deitzel J M, Kleinmeyer J, Harris D, Tan N C B. The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001, 42(1): 261–272

    Article  CAS  Google Scholar 

  37. Fong H, Chun I, Reneker D H. Beaded nanofibers formed during electrospinning. Polymer, 1999, 40(16): 4585–4592

    Article  CAS  Google Scholar 

  38. Nasir M, Matsumoto H, Danno T, Minagawa M, Irisawa T, Shioya M, Tanioka A. Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. Journal of Polymer Science. Part B, Polymer Physics, 2006, 44(5): 779–786

    Article  CAS  Google Scholar 

  39. Tsai P P, Schreuder-Gibson H, Gibson P. Different electrostatic methods for making electret filters. Journal of Electrostatics, 2002, 54(3–4): 333–341

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yakai Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, Y., Meng, F., Xiao, R. et al. Electrospinning of polycarbonate urethane biomaterials. Front. Chem. Sci. Eng. 5, 11–18 (2011). https://doi.org/10.1007/s11705-010-1011-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11705-010-1011-x

Keywords

Navigation