[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Construction and analysis of functional brain network based on emotional electroencephalogram

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract 

Networks play an important role in studying structure or functional connection of various brain areas, and explaining mechanism of emotion. However, there is a lack of comprehensive analysis among different construction methods nowadays. Therefore, this paper studies the impact of different emotions on connection of functional brain networks (FBNs) based on electroencephalogram (EEG). Firstly, we defined electrode node as brain area of vicinity of electrode to construct 32-node small-scale FBN. Pearson correlation coefficient (PCC) was used to construct correlation-based FBNs. Phase locking value (PLV) and phase synchronization index (PSI) were utilized to construct synchrony-based FBNs. Next, global properties and effects of emotion of different networks were compared. The difference of synchrony-based FBN concentrates in alpha band, and the number of differences is less than that of correlation-based FBN. Node properties of different small-scale FBNs have significant differences, offering a new basis for feature extraction of recognition regions in emotional FBNs. Later, we made partition of electrode nodes and 10 new brain areas were defined as regional nodes to construct 10-node large-scale FBN. Results show the impact of emotion on network clusters on the right forehead, and high valence enhances information processing efficiency of FBN by promoting connections in brain areas.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data availability

The data used to support the findings of this study are database for emotion analysis using physical signals (DEAP): http://www.eecs.qmul.ac.uk/mmv/datasets/deap/readme.html.

References

  1. Padhmashree V, Bhattacharyya A (2022) Human emotion recognition based on time-frequency analysis of multivariate EEG signal. Knowledge-Based Syst 238:107867. https://doi.org/10.1016/j.knosys.2021.107867

    Article  Google Scholar 

  2. Liang Z, Oba S, Ishii S (2019) An unsupervised EEG decoding system for human emotion recognition. Neural Netw 116:257–268. https://doi.org/10.1016/j.neunet.2019.04.003

    Article  Google Scholar 

  3. Liu Y, Fu G (2021) Emotion recognition by deeply learned multi-channel textual and EEG features. Futur Gener Comp Syst 119:1–6. https://doi.org/10.1016/j.future.2021.01.010

    Article  Google Scholar 

  4. Chen R, Tang D, Hu L (2015) Measuring of pain based on neurophysiology. J Psychol Sci 38(5):1256–1263. https://doi.org/10.16719/j.cnki.1671-6981.2015.05.030

    Article  Google Scholar 

  5. Goshvarpour A, Goshvarpour A (2021) Innovative Poincare’s plot asymmetry descriptors for EEG emotion recognition. Cogn Neurodyn. https://doi.org/10.1007/s11571-021-09735-5

    Article  Google Scholar 

  6. Cao R (2014) Nonlinear and complex network theory in the application of EEG data analysis research. PhD Dissertation Taiyuan University of Technology, Taiyuan. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFDLAST2015&filename=1015607448.nh&v=ptbsds12GpT%25mmd2FdGToipWW140UE%25mmd2FhLYKmfp3v%25mmd2B4j2Q5wz2d5UxtDmpVa5FTlep%25mmd2Fd7N. Accessed 16th, July, 2015-15th, August, 2015

  7. Fabrizio FDV, Babiloni F (2010) The graph theoretical approach in brain functional networks theory and applications. https://doi.org/10.2200/S00279ED1V01Y201004BME036

  8. Chen J, Hu B, Wang Y et al (2016) A three-stage decision framework for multi-subject emotion recognition using physiological signals. In: Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine, pp. 470–474, Shenzhen, China. https://doi.org/10.1109/BIBM.2016.7822562

  9. Sporns O, Tononi G, Kötter R (2005) The human connectome: a structural description of the human brain. Plos Comput Biol 1(4):e42. https://doi.org/10.1371/journal.pcbi.0010042

    Article  CAS  Google Scholar 

  10. Lai Y, Gao T, Wu D, Yao D (2008) Research on electroencephalogram of musical emotion perception. J Univ Elect Sci Technol China 37(2): 301–304. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CJFD&dbname=CJFD2008&filename=DKDX200802041&v=qhPutXheFFbhFovZiAt8o7RxHwzf8w3dZ7q3%25mmd2FAXfXWgW0cIHhYdt%25mmd2B3%25mmd2FO0waSWUOr. Accessed March 2008

  11. Elam JS, Essen DV (2013) Human connectome project. Encyclopedia Comput Neurosci. https://doi.org/10.1007/978-1-4614-7320-6_592-1

    Article  Google Scholar 

  12. Alivisatos AP, Andrews AM, Boyden ES et al (2013) Nanotools for neuroscience and brain activity mapping. ACS Nano 7(3):1850–1866. https://doi.org/10.1021/nn4012847

    Article  CAS  Google Scholar 

  13. Seo EH, Lee DY, Lee JM et al (2013) Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer’s disease. PLoS ONE 8(1):e53922. https://doi.org/10.1371/journal.pone.0053922

    Article  CAS  Google Scholar 

  14. Garrison KA, Scheinost D, Finn ES, Shen X, Constable RT (2015) The (in)stability of functional brain network measures across thresholds. Neuroimage 118:651–661. https://doi.org/10.1016/j.neuroimage.2015.05.046

    Article  Google Scholar 

  15. Makhtar SN, Senik MH, Stevenson CW, Mason R, Halliday DM (2020) Improved functional connectivity network estimation for brain networks using multivariate partial coherence. J Neural Eng 17:026013. https://doi.org/10.1088/1741-2552/ab7a50

    Article  Google Scholar 

  16. Sengupta A, Routray A, Datta S (2016) Brain networks using nonlinear interdependence-based EEG synchronization: a study of human fatigue. In: Proceedings of 2016 International Conference on Systems in Medicine and Biology, pp. 170–173, IIT Kharagpur, India. https://doi.org/10.1007/978-3-319-56782-2_9069-1

  17. Kirwan B, Bodily T (2017) Graph theory. Encyclopedia Clin Neuropsychol. https://doi.org/10.1007/978-3-319-56782-2_9069-1

    Article  Google Scholar 

  18. Garretón M, Hylandf K, Parra D (2017) Understanding people’s interaction with neural Sci-Art. In: Proceedings of 2017 IEEE VIS Arts Program (VISAP) pp. 1–7, Phoenix, AZ, USA. https://doi.org/10.1109/VISAP.2017.8282366

  19. Rosário RS, Cardoso PT, Muñoz MA, Montoya P, Miranda JGV (2015) Motif-synchronization: a new method for analysis of dynamic brain networks with EEG. Physica A 439:7–19. https://doi.org/10.1016/j.physa.2015.07.018

    Article  Google Scholar 

  20. Wang Q et al (2021) Using convolutional neural networks to decode EEG-based functional brain network with different severity of acrophobia. J Neural Eng 18:016007. https://doi.org/10.1088/1741-2552/abcdbd

    Article  Google Scholar 

  21. Thilaga M, Ramasamy V, Nadarajan R, Nandagopal D (2018) Shortest path based network analysis to characterize cognitive load states of human brain using EEG based functional brain networks. J Integr Neurosci 17(2):133–148. https://doi.org/10.31083/JIN-170049

    Article  CAS  Google Scholar 

  22. Tewarie P, Schoonheim MM, Schouten DI et al (2015) Functional brain networks: linking thalamic atrophy to clinical disability in multiple sclerosis, a multimodal fMRI and MEG study. Hum Brain Mapp 36(2):603–618. https://doi.org/10.1002/2Fhbm.22650

    Article  Google Scholar 

  23. Straaten ECW, Stam CJ (2013) Structure out of chaos: functional brain network analysis with EEG, MEG, and functional MRI. Eur Neuropsychopharmacol 23(1):7–18. https://doi.org/10.1016/j.euroneuro.2012.10.010

    Article  CAS  Google Scholar 

  24. Xing M, Tadayonnejad R, MacNamara A (2016) EEG based functional connectivity reflects cognitive load during emotion regulation. In: Proceedings of 2016 IEEE 13th International Symposium on Biomedical Imaging, pp. 771–774, Prague, Czech Republic. https://doi.org/10.1109/ISBI.2016.7493380

  25. Wu J, Zhang J, Ding X, Li R, Zhou C (2013) The effects of music on brain functional networks: a network analysis. Neurosci 250:49–59. https://doi.org/10.1016/j.neuroscience.2013.06.021

    Article  CAS  Google Scholar 

  26. Li Y (2017) Emotion analysis and recognition based on EEG brain networks. MSc Thesis Taiyuan University of Technology, Taiyuan. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201801&filename=1017832642.nh&v=1VksciZ9seB1BljMWHN%25mmd2B3cbIloS69OYbBF55%25mmd2FI%25mmd2Fy54xMELX8vLPR3aq25Sb8z0lo. Accessed 16th, December, 2017-15th, January, 2018

  27. Wu Z (2015) The research of EEG brain function network construction and application. MSc Thesis Taiyuan University of Technology, Taiyuan. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201502&filename=1015603212.nh&v=rRg%25mmd2B175q9Zw%25mmd2B7gIKvSBRXwPuGN8IR7J7FAOtuI4HyMgujyG9SqqMAwkEiBuFHY62. Accessed 16th, August, 2015-15th, September, 2015

  28. Gao J, Wang W (2015) Research of effective network of emotion electroencephalogram based on sparse Bayesian network. J Biomed Eng 32(5): 945–951. https://schlr.cnki.net/zn/Detail/index/SJPD_04/SJPD421BF131D7A7B399759FB0E904610D38. Accessed October, 2015

  29. Zhang J, Zhao S, Huang W, Hu S (2017) Brain effective connectivity analysis from EEG for positive and negative emotion. In: Proceedings of International Conference on Neural Information Processing, pp. 851–857, Guangzhou, China. https://doi.org/10.1007/978-3-319-70093-9_90

  30. Sreeshakthy M, Preethi J (2016) Classification of human emotion from deap EEG signal using hybrid improved neural networks with cuckoo search. Brain Broad Res Artif Intell Neurosci 6(3–4):60–73

    Google Scholar 

  31. Li Q, Cao D, Li Y, Tang Y (2017) Research on the effects of the continuous theta burst transcranial magnetic stimuli on brain network in emotional processing. J Biomed Eng 34(4):518–528. https://doi.org/10.7507/1001-5515.201606048

    Article  CAS  Google Scholar 

  32. McPherson MJ, Barrett FS, Lopez-Gonzalez M, Jiradejvong P, Limb CJ (2016) Emotional intent modulates the neural substrates of creativity: an fMRI study of emotionally targeted improvisation in jazz musicians. Sci Rep 6:18460. https://doi.org/10.1038/srep18460

    Article  CAS  Google Scholar 

  33. Koelstra S, Muhl C, Soleymani M et al (2012) DEAP: a database for emotion analysis; using physiological signals. IEEE T Affect Comput 3:18–31. https://doi.org/10.1109/T-AFFC.2011.15

    Article  Google Scholar 

  34. Du N, Zhou F, Pulver EM, Tilbury DM, Robert LP, Pradhan AK, Yang XJ (2020) Examining the effects of emotional valence and arousal on takeover performance in conditionally automated driving. Transp Res Pt C-Emerg Technol 112:78–87. https://doi.org/10.1016/j.trc.2020.01.006

    Article  Google Scholar 

  35. Morris JD (1995) SAM: The self-assessment manikin an efficient cross-cultural measurement of emotional response. J Advert Res 35(8):63–68

    Google Scholar 

  36. He G, Hu Y, Yang Y, Wei W (2015) Construction and analysis of brain functionality network based on rs-fMRI data. J East China Univ Sci Technol (Nat Sci Edit) 41:821–827. https://doi.org/10.14135/j.cnki.1006-3080.2015.06.015

    Article  CAS  Google Scholar 

  37. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069. https://doi.org/10.1016/j.neuroimage.2009.10.003

    Article  Google Scholar 

  38. Bordier C, Nicolini C, Bifone A (2017) Graph analysis and modularity of brain functional connectivity networks: searching for the optimal threshold. Front Neurosci 11:441. https://doi.org/10.3389/fnins.2017.00441

    Article  Google Scholar 

  39. Liao X, Vasilakos AV, He Y (2017) Small-world human brain networks: perspectives and challenges. Neurosci Biobehav R 77:286–300. https://doi.org/10.1016/j.neubiorev.2017.03.018

    Article  Google Scholar 

  40. Gouveia L, Martins P (2015) Solving the maximum edge-weight clique problem in sparse graphs with compact formulations. EURO J Comput Optim 3(1):1–30. https://doi.org/10.1007/s13675-014-0028-1

    Article  Google Scholar 

  41. Jiao Y (2014) Phase synchronization model and its applications. MSc Thesis Xidian University, Xi’an. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CMFD&dbname=CMFD201402&filename=1014330880.nh&v=LZGMdserltfV%25mmd2BIWalsgtmIhlGSz2IKFQeVdnxebZ8j2uDFS%25mmd2B4TjNGxpoYs5h1XfH. Accessed 16th, October, 2014-15th, November, 2014

  42. Sun J, Li Z, Tong S (2012) Inferring functional neural connectivity with phase synchronization analysis: a review of methodology. Comput Math Method Med 2012:239210. https://doi.org/10.1155/2012/239210

    Article  Google Scholar 

  43. Sakkalis V (2011) Review of advanced techniques for the estimation of brain connectivity measured with EEG/MEG. Comput Biol Med 41(12):1110–1117. https://doi.org/10.1016/j.compbiomed.2011.06.020

    Article  CAS  Google Scholar 

  44. Xu H, Plataniotis KN (2017) Affective states classification using EEG and semi-supervised deep learning approaches. In: Proceedings of the International Workshop on Multimedia Signal Processing, pp. 1–6, London, UK.

  45. Zhang J, Chen M, Hu S, Cao Y, Kozma R (2016) PNN for EEG-based emotion recognition. In: Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2319–2323, Budapest, Hungary.

  46. Lachaux JP, Rodriguez E, Quyen MLV et al (2000) Studying single-trials of phase synchronous activity in the brain. Int J Bifurcat Chaos 10:2429–2439. https://doi.org/10.1142/S0218127400001560

    Article  Google Scholar 

  47. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Mapp 8:194–208. https://doi.org/10.1002/(SICI)1097-0193(1999)8:4%3c194::AID-HBM4%3e3.0.CO;2-C

    Article  CAS  Google Scholar 

  48. Wang Z, Tong Y, Heng X (2019) Phase-locking value based graph convolutional neural networks for emotion recognition. IEEE Access 7:93711–93722. https://doi.org/10.1109/ACCESS.2019.2927768

    Article  Google Scholar 

  49. Zhang J, Xu H, Zhu L, Kong W, Ma Z (2019) Gender recognition in emotion perception using EEG features, In: Proceedings of the 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2883–2887. https://doi.org/10.1109/BIBM47256.2019.8983332.

  50. Sun J, Hong X, Tong S (2012) Phase synchronization analysis of EEG signals: an evaluation based on surrogate tests. IEEE Trans Biomed Eng 59: 2254–2263, San Diego, USA. https://doi.org/10.1109/TBME.2012.2199490

  51. Guo H (2013) Machine learning classifier using abnormal resting state functional brain network topological metrics in major depressive disorder. PhD Dissertation Taiyuan University of Technology, Taiyuan. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=CDFD&dbname=CDFD1214&filename=1014155588.nh&v=E9oluIozrv%25mmd2FUjG%25mmd2FDZ5rcckjggQenxWs%25mmd2B9%25mmd2BHU4kew2vJL4CEvwV5zt%25mmd2FTklVy4LAAQ. Accessed 16th, May, 2014-15th, June, 2014

  52. Keselman HJ, Keselman JC, Games PA (1991) Maximum familywise type I error rate: the least significant difference, Newman-Keuls, and other multiple comparison procedures. Psychol Bull 110:155–161. https://doi.org/10.1037/0033-2909.110.1.155

    Article  Google Scholar 

  53. Zimmerman DW (2004) Inflation of type I error rates by unequal variances associated with parametric, nonparametric, and Rank-Transformation Tests. Psicológica, 25: 103–133. http://www.redalyc.org/articulo.oa?id=16925106

  54. Rosenthal R (1994) Parametric measures of effect size. The handbook of research synthesis 231-244

  55. Chaudhry A, Xu P, Gu Q (2017) Uncertainty assessment and false discovery rate control in high-dimensional Granger causal inference. In: Proceedings of the 34th International Conference on Machine Learning, PMLR 70:684–693, Sydney, Australia. https://proceedings.mlr.press/v70/chaudhry17a.html. Accessed 6th, August 2017

  56. Wang Y, Zhai J, Wu X, Adu-Gyamfi EA et al (2022) LncRNA functional annotation with improved false discovery rate achieved by disease associations. Comp Struct Biotechnol J 20:322–332. https://doi.org/10.1016/j.csbj.2021.12.016

    Article  CAS  Google Scholar 

  57. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57:289–300

    Google Scholar 

  58. Benditkis J, Heesen P, Janssen A (2018) The false discovery rate (FDR) of multiple tests in a class room lecture. Stat Probab Lett 134:29–35. https://doi.org/10.1016/j.spl.2017.09.017

    Article  Google Scholar 

Download references

Funding

This work was sponsored by National Natural Science Foundation of China (Grant No. 61301012, No. 61471140), Sci-tech Innovation Foundation of Harbin (No. 2016RALGJ001), and China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qisong Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, D., Cao, T., Wang, Q. et al. Construction and analysis of functional brain network based on emotional electroencephalogram. Med Biol Eng Comput 61, 357–385 (2023). https://doi.org/10.1007/s11517-022-02708-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-022-02708-8

Keywords

Navigation