[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

PPARɑ Ligand Caudatin Improves Cognitive Functions and Mitigates Alzheimer’s Disease Defects By Inducing Autophagy in Mice Models

  • RESEARCH
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The autophagy-lysosomal pathway (ALP) is a major cellular machinery involved in the clearance of aggregated proteins in Alzheimer disease (AD). However, ALP is dramatically impaired during AD pathogenesis via accumulation of toxic amyloid beta (Aβ) and phosphorylated-Tau (phospho-Tau) proteins in the brain. Therefore, activation of ALP may prevent the increased production of Aβ and phospho-Tau in AD. Peroxisome proliferator-activated receptor alpha (PPARα), a transcription factor that can activate autophagy, and transcriptionally regulate transcription factor EB (TFEB) which is a key regulator of ALP. This suggests that targeting PPARα, to reduce ALP impairment, could be a viable strategy for AD therapy. In this study, we investigated the anti-AD activity of Caudatin, an active constituent of Cynanchum otophyllum (a traditional Chinese medicinal herb, Qing Yang Shen; QYS). We found that Caudatin can bind to PPARα as a ligand and augment the expression of ALP in microglial cells and in the brain of 3XTg-AD mice model. Moreover, Caudatin could activate PPARα and transcriptionally regulates TFEB-augmented lysosomal degradation of Aβ and phosphor-Tau aggregates in AD cell models. Oral administration of Caudatin decreased AD pathogenesis and ameliorated the cognitive dysfunction in 3XTg-AD mouse model. Conclusively, Caudatin can be a potential AD therapeutic agent via activation of PPARα-dependent ALP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Any raw data related to this manuscript may be requested from the corresponding author.

Code availability

All data in this study were statistically analyzed using GraphPad Prism software. All the figures were prepared using Adobe Illustrator. Graphical abstract was prepared using BioRender and Adobe Illustrator.

References:

  • Boland B, Yu WH, Corti O, Mollereau B, Henriques A, Bezard E, Pastores GM, Rubinsztein DC, Nixon RA, Duchen MR, Mallucci GR, Kroemer G, Levine B, Eskelinen EL, Mochel F, Spedding M, Louis C, Martin OR, Millan MJ (2018) Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nat Rev Drug Discov 17:660–688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busche MA, Hyman BT (2020) Synergy between amyloid-beta and tau in Alzheimer’s disease. Nat Neurosci 23:1183–1193

    Article  CAS  PubMed  Google Scholar 

  • Caballero B et al (2021) Acetylated tau inhibits chaperone-mediated autophagy and promotes tau pathology propagation in mice. Nat Commun 12:2238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai CZ, Zhuang XX, Zhu Q, Wu MY, Su H, Wang XJ, Iyaswamy A, Yue Z, Wang Q, Zhang B, Xue Y, Tan J, Li M, He H, Lu JH (2022) Enhancing autophagy maturation with CCZ1-MON1A complex alleviates neuropathology and memory defects in Alzheimer disease models. Theranostics 12:1738–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Jana M, Pahan K (2018) Aspirin Induces Lysosomal Biogenesis and Attenuates Amyloid Plaque Pathology in a Mouse Model of Alzheimer’s Disease via PPARalpha. J Neurosci 38:6682–6699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chandra S, Roy A, Jana M, Pahan K (2019) Cinnamic acid activates PPARalpha to stimulate Lysosomal biogenesis and lower Amyloid plaque pathology in an Alzheimer’s disease mouse model. Neurobiol Dis 124:379–395

    Article  CAS  PubMed  Google Scholar 

  • Chen F, Ghosh A, Lin J, Zhang C, Pan Y, Thakur A, Singh K, Hong H, Tang S (2020) 5-lipoxygenase pathway and its downstream cysteinyl leukotrienes as potential therapeutic targets for Alzheimer’s disease. Brain Behav Immun 88:844–855

    Article  CAS  PubMed  Google Scholar 

  • d’Errico P, Meyer-Luehmann M (2020) Mechanisms of Pathogenic Tau and Abeta Protein Spreading in Alzheimer’s Disease. Front Aging Neurosci 12:265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang EF, Hou Y, Palikaras K, Adriaanse BA, Kerr JS, Yang B, Lautrup S, Hasan-Olive MM, Caponio D, Dan X, Rocktaschel P, Croteau DL, Akbari M, Greig NH, Fladby T, Nilsen H, Cader MZ, Mattson MP, Tavernarakis N, Bohr VA (2019) Mitophagy inhibits amyloid-beta and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 22:401–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frisoni GB, Altomare D, Thal DR, Ribaldi F, van der Kant R, Ossenkoppele R, Blennow K, Cummings J, van Duijn C, Nilsson PM, Dietrich PY, Scheltens P, Dubois B (2022) The probabilistic model of Alzheimer disease: the amyloid hypothesis revised. Nat Rev Neurosci 23:53–66

    Article  CAS  PubMed  Google Scholar 

  • Gaurav I, Thakur A, Iyaswamy A, Wang X, Chen X, Yang Z (2021) Factors affecting extracellular vesicles based drug delivery systems. Molecules 26

  • Gaurav I, Thakur A, Kumar G, Long Q, Zhang K, Sidu RK, Thakur S, Sarkar RK, Kumar A, Iyaswamy A, Yang Z (2023) Delivery of apoplastic extracellular vesicles encapsulating green-synthesized silver nanoparticles to treat citrus canker. Nanomaterials (Basel) 13

  • Gherardelli C, Cisternas P, Inestrosa NC (2022) Lithium enhances hippocampal glucose metabolism in an in vitro mice model of alzheimer's disease. Int J Mol Sci 23

  • Hampel H, Lista S, Mango D, Nistico R, Perry G, Avila J, Hernandez F, Geerts H, Vergallo A, Alzheimer Precision Medicine I (2019) Lithium as a Treatment for Alzheimer’s Disease: The Systems Pharmacology Perspective. J Alzheimers Dis 69:615–629

    Article  PubMed  Google Scholar 

  • Hong M, Chen DC, Klein PS, Lee VM (1997) Lithium reduces tau phosphorylation by inhibition of glycogen synthase kinase-3. J Biol Chem 272:25326–25332

    Article  CAS  PubMed  Google Scholar 

  • Iyaswamy A, Lu K, Guan XJ, Kan Y, Su C, Liu J, Jaganathan R, Vasudevan K, Paul J, Thakur A, Li M (2023) Impact and advances in the role of bacterial extracellular vesicles in neurodegenerative disease and its therapeutics. Biomedicines 11

  • Iyaswamy A, Krishnamoorthi SK, Zhang H, Sreenivasmurthy SG, Zhu Z, Liu J, Su CF, Guan XJ, Wang ZY, Cheung KH, Song JX, Durairajan SSK, Li M (2021) Qingyangshen mitigates amyloid-beta and Tau aggregate defects involving PPARalpha-TFEB activation in transgenic mice of Alzheimer’s disease. Phytomedicine 91:153648

    Article  CAS  PubMed  Google Scholar 

  • Iyaswamy A, Krishnamoorthi SK, Song JX, Yang CB, Kaliyamoorthy V, Zhang H, Sreenivasmurthy SG, Malampati S, Wang ZY, Zhu Z, Tong BC, Cheung KH, Lu JH, Durairajan SSK, Li M (2020a) NeuroDefend, a novel Chinese medicine, attenuates amyloid-beta and tau pathology in experimental Alzheimer’s disease models. J Food Drug Anal 28:132–146

    Article  CAS  PubMed  Google Scholar 

  • Iyaswamy A, Krishnamoorthi SK, Liu YW, Song JX, Kammala AK, Sreenivasmurthy SG, Malampati S, Tong BCK, Selvarasu K, Cheung KH, Lu JH, Tan JQ, Huang CY, Durairajan SSK, Li M (2020b) Yuan-Hu Zhi Tong Prescription Mitigates Tau Pathology and Alleviates Memory Deficiency in the Preclinical Models of Alzheimer’s Disease. Front Pharmacol 11:584770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyaswamy A, Wang X, Krishnamoorthi S, Kaliamoorthy V, Sreenivasmurthy SG, Kumar Durairajan SS, Song JX, Tong BC, Zhu Z, Su CF, Liu J, Cheung KH, Lu JH, Tan JQ, Li HW, Wong MS, Li M (2022) Theranostic F-SLOH mitigates Alzheimer’s disease pathology involving TFEB and ameliorates cognitive functions in Alzheimer’s disease models. Redox Biol 51:102280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim S, Chen J, Cheng T, Gindulyte A, He J, He S, Li Q, Shoemaker BA, Thiessen PA, Yu B, Zaslavsky L, Zhang J, Bolton EE (2021) PubChem in 2021: new data content and improved web interfaces. Nucleic Acids Res 49:D1388–D1395

    Article  CAS  PubMed  Google Scholar 

  • Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J Chem Inf Model 51:2778–2786

    Article  CAS  PubMed  Google Scholar 

  • Luo R, Su LY, Li G, Yang J, Liu Q, Yang LX, Zhang DF, Zhou H, Xu M, Fan Y, Li J, Yao YG (2020) Activation of PPARA-mediated autophagy reduces Alzheimer disease-like pathology and cognitive decline in a murine model. Autophagy 16:52–69

    Article  CAS  PubMed  Google Scholar 

  • Ma XX, Wang D, Zhang YJ, Yang CR (2011) Identification of new qingyangshengenin and caudatin glycosides from the roots of Cynanchum otophyllum. Steroids 76:1003–1009

    Article  CAS  PubMed  Google Scholar 

  • Maesako M, Houser MCQ, Turchyna Y, Wolfe MS, Berezovska O (2022) Presenilin/gamma-Secretase Activity Is Located in Acidic Compartments of Live Neurons. J Neurosci 42:145–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McDade E, Llibre-Guerra JJ, Holtzman DM, Morris JC, Bateman RJ (2021) The informed road map to prevention of Alzheimer Disease: A call to arms. Mol Neurodegener 16:49

    Article  PubMed  PubMed Central  Google Scholar 

  • McGrowder DA, Miller F, Vaz K, Nwokocha C, Wilson-Clarke C, Anderson-Cross M, Brown J, Anderson-Jackson L, Williams L, Latore L, Thompson R, Alexander-Lindo R (2021) Cerebrospinal fluid biomarkers of alzheimer's disease: current evidence and future perspectives. Brain Sci 11

  • Munoz-Ruiz P, Rubio L, Garcia-Palomero E, Dorronsoro I, del Monte-Millan M, Valenzuela R, Usan P, de Austria C, Bartolini M, Andrisano V, Bidon-Chanal A, Orozco M, Luque FJ, Medina M, Martinez A (2005) Design, synthesis, and biological evaluation of dual binding site acetylcholinesterase inhibitors: new disease-modifying agents for Alzheimer’s disease. J Med Chem 48:7223–7233

    Article  CAS  PubMed  Google Scholar 

  • Nie D, Peng Y, Li M, Liu X, Zhu M, Ye L (2018) Lithium chloride (LiCl) induced autophagy and downregulated expression of transforming growth factor beta-induced protein (TGFBI) in granular corneal dystrophy. Exp Eye Res 173:44–50

    Article  CAS  PubMed  Google Scholar 

  • Oyama T, Toyota K, Waku T, Hirakawa Y, Nagasawa N, Kasuga JI, Hashimoto Y, Miyachi H, Morikawa K (2009) Adaptability and selectivity of human peroxisome proliferator-activated receptor (PPAR) pan agonists revealed from crystal structures. Acta Crystallogr D Biol Crystallogr 65:786–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parums DV (2021) Editorial: Targets for Disease-Modifying Therapies in Alzheimer’s Disease, Including Amyloid beta and Tau Protein. Med Sci Monit 27:e934077

    PubMed  PubMed Central  Google Scholar 

  • Patel D, Roy A, Pahan K (2020) PPARalpha serves as a new receptor of aspirin for neuroprotection. J Neurosci Res 98:626–631

    Article  CAS  PubMed  Google Scholar 

  • Patel D, Roy A, Kundu M, Jana M, Luan CH, Gonzalez FJ, Pahan K (2018) Aspirin binds to PPARalpha to stimulate hippocampal plasticity and protect memory. Proc Natl Acad Sci U S A 115:E7408–E7417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Y, Ding Y (2015) Pharmacokinetics and tissue distribution study of caudatin in normal and diethylnitrosamine-induced hepatocellular carcinoma model rats. Molecules 20:4225–4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612

    Article  CAS  PubMed  Google Scholar 

  • Qian X, Li B, Li P, Wang D, Dai W, Zhang M (2017) C21 steroidal glycosides from Cynanchum auriculatum and their neuroprotective effects against H2O2-induced damage in PC12 cells. Phytochemistry 140:1–15

    Article  CAS  PubMed  Google Scholar 

  • Qu XX, He JH, Cui ZQ, Yang T, Sun XH (2022) PPAR-alpha Agonist GW7647 Protects Against Oxidative Stress and Iron Deposit via GPx4 in a Transgenic Mouse Model of Alzheimer’s Diseases. ACS Chem Neurosci 13:207–216

    Article  CAS  PubMed  Google Scholar 

  • Raha S, Ghosh A, Dutta D, Patel DR, Pahan K (2021) Activation of PPARalpha enhances astroglial uptake and degradation of beta-amyloid. Sci Signal 14:eabg4747

  • Roy A, Pahan K (2015) PPARalpha signaling in the hippocampus: crosstalk between fat and memory. J Neuroimmune Pharmacol 10:30–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Rusmini P, Cortese K, Crippa V, Cristofani R, Cicardi ME, Ferrari V, Vezzoli G, Tedesco B, Meroni M, Messi E, Piccolella M, Galbiati M, Garre M, Morelli E, Vaccari T, Poletti A (2019) Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy 15:631–651

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Floto RA, Berger Z, Imarisio S, Cordenier A, Pasco M, Cook LJ, Rubinsztein DC (2005) Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 170:1101–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Settembre C, Medina DL (2015) TFEB and the CLEAR network. Methods Cell Biol 126:45–62

    Article  CAS  PubMed  Google Scholar 

  • Settembre C, Di Malta C, Polito VA, Garcia Arencibia M, Vetrini F, Erdin S, Erdin SU, Huynh T, Medina D, Colella P, Sardiello M, Rubinsztein DC, Ballabio A (2011) TFEB links autophagy to lysosomal biogenesis. Science 332:1429–1433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva MC, Nandi GA, Tentarelli S, Gurrell IK, Jamier T, Lucente D, Dickerson BC, Brown DG, Brandon NJ, Haggarty SJ (2020) Prolonged tau clearance and stress vulnerability rescue by pharmacological activation of autophagy in tauopathy neurons. Nat Commun 11:3258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh AK, Mishra G, Maurya A, Awasthi R, Kumari K, Thakur A, Rai A, Rai GK, Sharma B, Kulkarni GT, Singh SK (2019) Role of TREM2 in Alzheimer’s Disease and its Consequences on beta- Amyloid, Tau and Neurofibrillary Tangles. Curr Alzheimer Res 16:1216–1229

    Article  CAS  PubMed  Google Scholar 

  • Song JX, Malampati S, Zeng Y, Durairajan SSK, Yang CB, Tong BC, Iyaswamy A, Shang WB, Sreenivasmurthy SG, Zhu Z, Cheung KH, Lu JH, Tang C, Xu N, Li M (2020) A small molecule transcription factor EB activator ameliorates beta-amyloid precursor protein and Tau pathology in Alzheimer’s disease models. Aging Cell 19:e13069

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasmurthy SG, Iyaswamy A, Krishnamoorthi S, Senapati S, Malampati S, Zhu Z, Su CF, Liu J, Guan XJ, Tong BC, Cheung KH, Tan JQ, Lu JH, Durairajan SSK, Song JX, Li M (2022a) Protopine promotes the proteasomal degradation of pathological tau in Alzheimer’s disease models via HDAC6 inhibition. Phytomedicine 96:153887

    Article  CAS  PubMed  Google Scholar 

  • Sreenivasmurthy SG, Iyaswamy A, Krishnamoorthi S, Reddi RN, Kammala AK, Vasudevan K, Senapati S, Zhu Z, Su CF, Liu J, Guan XJ, Chua KK, Cheung KH, Chen H, Zhang HJ, Zhang Y, Song JX, Kumar Durairajan SS, Li M (2022b) Bromo-protopine, a novel protopine derivative, alleviates tau pathology by activating chaperone-mediated autophagy for Alzheimer’s disease therapy. Front Mol Biosci 9:1030534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan ZW, Xie S, Hu SY, Liao T, Liu P, Peng KH, Yang XZ, He ZL, Tang HY, Cui Y, Peng XN, Zhang J, Zhou C (2016) Caudatin targets TNFAIP1/NF-kappaB and cytochrome c/caspase signaling to suppress tumor progression in human uterine cancer. Int J Oncol 49:1638–1650

    Article  CAS  PubMed  Google Scholar 

  • Thakur A, Sidu RK, Zou H, Alam MK, Yang M, Lee Y (2020) Inhibition of Glioma Cells’ Proliferation by Doxorubicin-Loaded Exosomes via Microfluidics. Int J Nanomedicine 15:8331–8343

    Article  PubMed  PubMed Central  Google Scholar 

  • Tong BC, Huang AS, Wu AJ, Iyaswamy A, Ho OK, Kong AH, Sreenivasmurthy SG, Zhu Z, Su C, Liu J, Song J, Li M, Cheung KH (2022) Tetrandrine ameliorates cognitive deficits and mitigates tau aggregation in cell and animal models of tauopathies. J Biomed Sci 29:85

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong BC, Wu AJ, Huang AS, Dong R, Malampati S, Iyaswamy A, Krishnamoorthi S, Sreenivasmurthy SG, Zhu Z, Su C, Liu J, Song J, Lu JH, Tan J, Pan W, Li M, Cheung KH (2021) Lysosomal TPCN (two pore segment channel) inhibition ameliorates beta-amyloid pathology and mitigates memory impairment in Alzheimer disease. Autophagy 1–19

  • Viola KL, Klein WL (2015) Amyloid beta oligomers in Alzheimer’s disease pathogenesis, treatment, and diagnosis. Acta Neuropathol 129:183–206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Wang C, Chan HN, Ashok I, Krishnamoorthi SK, Li M, Li HW, Wong MS (2021a) Amyloid-beta oligomer targeted theranostic probes for in vivo NIR imaging and inhibition of self-aggregation and amyloid-beta induced ROS generation. Talanta 224:121830

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Iyaswamy A, Xu D, Krishnamoorthi S, Sreenivasmurthy SG, Yang Y, Li Y, Chen C, Li M, Li HW, Wong MS (2022) Real-time detection and visualization of amyloid-beta aggregates induced by hydrogen peroxide in cell and mouse models of alzheimer's disease. ACS Appl Mater Interfaces

  • Wang ZY, Liu J, Zhu Z, Su CF, Sreenivasmurthy SG, Iyaswamy A, Lu JH, Chen G, Song JX, Li M (2021b) Traditional Chinese medicine compounds regulate autophagy for treating neurodegenerative disease: A mechanism review. Biomed Pharmacother 133:110968

    Article  CAS  PubMed  Google Scholar 

  • Wiseman AL, Briggs CA, Peritt A, Kapecki N, Peterson DA, Shim SS, Stutzmann GE (2023) Lithium Provides Broad Therapeutic Benefits in an Alzheimer’s Disease Mouse Model. J Alzheimers Dis 91:273–290

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Propson NE, Du S, Xiong W, Zheng H (2021) Autophagy deficiency modulates microglial lipid homeostasis and aggravates tau pathology and spreading. Proc Natl Acad Sci USA 118

  • Yang CB, Liu J, Tong BC, Wang ZY, Zhu Z, Su CF, Sreenivasmurthy SG, Wu JX, Iyaswamy A, Krishnamoorthi S, Huang SY, Cheung KH, Song JX, Tan JQ, Lu JH, Li M (2021) TFEB, a master regulator of autophagy and biogenesis, unexpectedly promotes apoptosis in response to the cyclopentenone prostaglandin 15d-PGJ2. Acta Pharmacol Sin

  • Yang J, Huang XB, Wan QL, Ding AJ, Yang ZL, Qiu MH, Sun HY, Qi SH, Luo HR (2017) Otophylloside B Protects Against Abeta Toxicity in Caenorhabditis elegans Models of Alzheimer’s Disease. Nat Prod Bioprospect 7:207–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yiannopoulou KG, Papageorgiou SG (2020) Current and Future Treatments in Alzheimer Disease: An Update. J Cent Nerv Syst Dis 12:1179573520907397

    Article  PubMed  PubMed Central  Google Scholar 

  • Yiannopoulou KG, Anastasiou AI, Zachariou V, Pelidou SH (2019) Reasons for Failed Trials of Disease-Modifying Treatments for Alzheimer Disease and their contribution in recent research. Biomedicines 7

  • Zhang W, Wang J, Yang C (2022) Celastrol, a TFEB (transcription factor EB) agonist, is a promising drug candidate for Alzheimer disease. Autophagy 1–3

  • Zhang Z, Yang X, Song YQ, Tu J (2021) Autophagy in Alzheimer’s disease pathogenesis: Therapeutic potential and future perspectives. Ageing Res Rev 72:101464

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Lin W, Jiang Y, Lu K, Wei W, Huo Q, Cui S, Yang X, Li M, Xu N, Tang C, Song JX (2021) Electroacupuncture ameliorates beta-amyloid pathology and cognitive impairment in Alzheimer disease via a novel mechanism involving activation of TFEB (transcription factor EB). Autophagy 17:3833–3847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhuang XX, Wang SF, Tan Y, Song JX, Zhu Z, Wang ZY, Wu MY, Cai CZ, Huang ZJ, Tan JQ, Su HX, Li M, Lu JH (2020) Pharmacological enhancement of TFEB-mediated autophagy alleviated neuronal death in oxidative stress-induced Parkinson’s disease models. Cell Death Dis 11:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Q, Hu Y, Shan Y, Wang Y, Wu X, Mao B, Ge RS (2015) Determination of Caudatin in Rat Plasma by UPLC-MS/MS: Application to a preclinical pharmacokinetic study. Pharmacology 96:49–54

    Article  CAS  PubMed  Google Scholar 

  • Zhu Z, Liu LF, Su CF, Liu J, Tong BC, Iyaswamy A, Krishnamoorthi S, Sreenivasmurthy SG, Guan XJ, Kan YX, Xie WJ, Zhao CL, Cheung KH, Lu JH, Tan JQ, Zhang HJ, Song JX, Li M (2022) Corynoxine B derivative CB6 prevents Parkinsonian toxicity in mice by inducing PIK3C3 complex-dependent autophagy. Acta Pharmacol Sin

Download references

Acknowledgements

We thank Dr. Carol Chu for her enormous support in ordering reagents and managing our lab needs. We thank Venkatapathy Kaliamoorthy and Tsz Yan Fung from School of Chinese medicine, HKBU for helping in staining and immunoblot experiments. We thank Ziwan Ning from School of Chinese medicine, HKBU for helping in pharmacokinetics analysis. We also thank Dr. Martha Dahlen for her English editing of this manuscript.

Funding

This present study was funded and supported by the grants of Health and Medical Research Fund (HMRF/17182541, HMRF/17182551, HMRF/19200721) and Research Grants Council of Hong Kong, the General Research Fund (GRF/HKBU 12100618) from Hong Kong Government and research grants from Hong Kong Baptist University (HKBU/RC-IRCs/17–18/03, IRCMS/19-20/H02), also research grants was supported by the National Natural Science Foundation of China (NSFC 81703487, NSFC 81773926) and Shenzhen Science and Technology Innovation Commission (JCYJ20180302174028790, JCYJ20180507184656626).

Author information

Authors and Affiliations

Authors

Contributions

The research study was conceived and conceptualized by: AI and ML. Methodology: AI, SKK, SGS, VK, TYF, ZD, ZZ, CFS, JL, AT, IG, GK, XJG, ZJY, YXK. Investigation: AI, SKK, VK, SGS, AT. Data curation: AI, SKK, SGS, VK, GK, AT. Writing original draft: AI, SKK, SGS, AT and ML. Writing, reviewing, and editing: ZZ, CFS, JL, KL, XJG, IG, GK, ZJY, YXK, ZD, ML, JXS and KHC. Funding acquisition: AI and ML. Resources: ML. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Min Li.

Ethics declarations

Ethics Approval

The research protocols and animal behavior experiments in this research were approved by the Research Committee of Hong Kong Baptist University for the Use of Human and Animal Subjects in Research and Teaching (HASC) (#HASC/18-19). The animal handling and experiments were performed with approved animal license (20-27) in DH/HT&A/8/2/6 Pt.1. In this study only mouse models were used for the experiments.

Consent to Participate

Not Applicable.

Consent for Publication

Not Applicable.

Conflict of Interest

All authors have read the journal’s policy on disclosure of potential conflicts of interest and have none to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2431 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnamoorthi, S., Iyaswamy, A., Sreenivasmurthy, S.G. et al. PPARɑ Ligand Caudatin Improves Cognitive Functions and Mitigates Alzheimer’s Disease Defects By Inducing Autophagy in Mice Models. J Neuroimmune Pharmacol 18, 509–528 (2023). https://doi.org/10.1007/s11481-023-10083-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-023-10083-w

Keywords

Navigation