[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Edge data based trailer inception probabilistic matrix factorization for context-aware movie recommendation

  • Published:
World Wide Web Aims and scope Submit manuscript

Abstract

The rapid growth of edge data generated by mobile devices and applications deployed at the edge of the network has exacerbated the problem of information overload. As an effective way to alleviate information overload, recommender system can improve the quality of various services by adding application data generated by users on edge devices, such as visual and textual information, on the basis of sparse rating data. The visual information in the movie trailer is a significant part of the movie recommender system. However, due to the complexity of visual information extraction, data sparsity cannot be remarkably alleviated by merely using the rough visual features to improve the rating prediction accuracy. Fortunately, the convolutional neural network can be used to extract the visual features precisely. Therefore, the end-to-end neural image caption (NIC) model can be utilized to obtain the textual information describing the visual features of movie trailers. This paper proposes a trailer inception probabilistic matrix factorization model called Ti-PMF, which combines NIC, recurrent convolutional neural network, and probabilistic matrix factorization models as the rating prediction model. We implement the proposed Ti-PMF model with extensive experiments on three real-world datasets to validate its effectiveness. The experimental results illustrate that the proposed Ti-PMF outperforms the existing ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. http://www.imdb.com/

  2. https://movie.douban.com/

References

  1. Ai, X., Chen, H., Lin, K., Wang, Z., Yu, J.: Nowhere to hide: efficiently identifying probabilistic cloning attacks in Large-Scale RFID systems. IEEE Transactions on Information Forensics and Security 16, 714–727 (2021)

    Article  Google Scholar 

  2. Altulyan, M., Yao, L., Wang, X., Huang, C., Kanhere, S.S., Sheng, Q.Z.: Recommender Systems for the Internet of Things: A Survey. arXiv:2007.06758

  3. Asabere, N.Y., Xia, F., Wang, W., Rodrigues, J.J., Basso, F., Ma, J.: Improving smart conference participation through Socially-Aware recommendation. IEEE Trans. Human-Machine Syst. 44(5), 689–700 (2014)

    Article  Google Scholar 

  4. Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., Vijayanarasimhan, S: YouTube-8M:, A Large-Scale Video Classification Benchmark. arXiv:1609.08675

  5. Aggarwal, C.C., Zhai, C.: A survey of text classification algorithms. Mining Text Data, pp. 163–222 (2012)

  6. Baltrunas, L., Ludwig, B., Ricci, F.: Matrix factorization techniques for context aware recommendation. In: Proc. of ACM Recsys, Chicage, USA, pp 301–304 (2011)

  7. Chen, H., Ai, X., Lin, K., Yan, N., Jiang, N., Wang, Z., Yu, J.: Fast and reliable missing tag detection for Multiple-Group RFID system. IEEE Transactions on Industrial Informatics 18, 345–355 (2022)

    Article  Google Scholar 

  8. Cui, G., He, Q., Chen, F., Zhang, Y., Jin, H., Yang, Y.: Interference-aware game-theoretic device allocation for mobile edge computing. IEEE Transactions on Mobile Computing, https://doi.org/10.1109/TMC.2021.3064063

  9. Chou, S.-Y., Jang, J.-S.R., Yang, Y.-H.: Fast tensor factorization for Large-Scale Context-Aware recommendation from implicit feedback. IEEE Trans. Big Data 6(1), 201–208 (2020)

    Article  Google Scholar 

  10. Chen, H., Wang, S., Jiang, N., Li, Z., Yan, N., Shi, L.: Trust-aware generative adversarial network with recurrent neural network for recommender. Int. J. Intell. Syst. 36, 778–795 (2021)

    Article  Google Scholar 

  11. Cui, Q., Wu, S., Liu, Q., Zhong, W., Wang, L.: MV-RNN: A Multi-View recurrent neural network for sequential recommendation. IEEE Trans. Knowl. Data Eng. 32(2), 317–331 (2020)

    Article  Google Scholar 

  12. Chen, L., Xia, M.: A context-aware recommendation approach based on feature selection. Appl. Intell. 51(3), 865–875 (2020)

    Google Scholar 

  13. Ding, X., Wang, L., Shao, Z., Jin, H.: Efficient recommendation of de-identification policies using MapReduce. IEEE Trans. Big Data 5(3), 343–354 (2019)

    Article  Google Scholar 

  14. Gong, Y., Jiang, Z., Feng, Y., Hu, B., Zhao, K., Liu, Q., Ou, W.: EdgeRec: Recommender System on Edge in Mobile Taobao. In: Proc. of ACM CIKM, pp. 2477–2484 (2020)

  15. Guo, R., Xia, H., Li, J., Liu, D.: DRCGR: Deep reinforcement learning framework incorporating CNN and GAN-Based for interactive recommendation. In: Proc. of IEEE ICDM, Beijing, China, pp. 1048–1053 (2019)

  16. Goldberg, M., Goldberg, R.: Data classification: algorithms and applications. Comput. Rev. 56(12), 724–725 (2015)

    Google Scholar 

  17. He, Q., Li, B., Chen, F., Grundy, J., Xia, X., Yang, Y.: Diversified Third-party Library Prediction for Mobile App Development. IEEE Transactions on Software Engineering, https://doi.org/10.1109/TSE.2020.2982154

  18. Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proc. of IEEE ICML, Lille France (2015)

  19. Kim, Y.: Convolutional neural networks for sentence classification, In: Proc. of EMNLP, Doha, Qatar, pp. 1746–1751 (2014)

  20. Kim, D., Park, C., Oh, J., Lee, S., Yu, H.: Convolutional matrix factorization for document context-aware recommendation, In: Proc. of ACM Recsys, Boston, MA, USA, pp. 233–240 (2016)

  21. Lin, K., Chen, H., Yan, N., Li, Z., Li, J., Jiang, N.: Fast and reliable missing tag detection for multiple-group RFID system. IEEE Transactions on Industrial Informatics, https://doi.org/10.1109/TII.2021.305895

  22. Liu, S., Yu, J., Deng, X., Wan, S.: FedCPF: An efficient-communication federated learning approach for vehicular edge computing in 6G communication networks. IEEE Transactions on Intelligent Transportation Systems, https://doi.org/10.1109/TITS.2021.3099368

  23. Lai, P., He, Q., Xia, X., Chen, F., Abdelrazek, M., Grundy, J., Hosking, J.G., Yang, Y.: Dynamic user allocation in stochastic mobile edge computing systems. IEEE Transactions on Services Computing, https://doi.org/10.1109/TSC.2021.3063148

  24. Li, Z., Chen, H., Lin, K., Shakhov, V., Shi, L., Yu, J.: From edge data to recommendation: A double attention-based deformable convolutional network. Peer-to-Peer Networking and Applications, https://doi.org/10.1007/s12083-020-01037-7

  25. Li, A., Yang, B.: GSIRec: Learning with graph side information for recommendation. World Wide Web, https://doi.org/10.1007/s11280-021-00910-6

  26. Li, Z., Wu, B., Liu, Q., Wu, L., Zhao, H., Mei, T.: Learning the compositional visual coherence for complementary recommendations. In: Proc. of IJCAI, Yokohama, Japan, pp. 3536–3543 (2021)

  27. Liu, H., Xia, F., Chen, Z., Asabere, N.Y., Ma, J., Huang, R.: Trucom: Exploiting domain-specific trust networks for multi-category item recommendation. IEEE Syst. J 11(1), 295–304 (2017)

    Article  Google Scholar 

  28. Liu, J., Xia, F., Wang, L., Xu, B., Kong, X., Tong, H., King, I.: Shifu2: A network representation learning based model for advisor-advisee relationship mining. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2019.2946825

  29. Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification, In: Proc. of AAAI, Sydney, NSW, Australia, pp 2267–2273 (2015)

  30. Macedo, A.Q., Marinho, L.B., Santos, R.L.T. (2015)

  31. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations in Vector Space. In: Proc. of IJCAI (2013)

  32. Papineni, K., Roukos, S., Ward, T., Zhu, W.: BLEU: a Method for Automatic Evaluation of Machine Translation, In: Proc. of ACL, Philadelphia, pp 311–318 (2002)

  33. Pan, W., Liu, Z., Ming, Z., Zhong, H., Wang, X., Xu, C.: Compressed knowledge transfer via factorization machine for heterogeneous collaborative recommendation. Konwledge-Based Syst. 85, 234–244 (2015)

    Article  Google Scholar 

  34. Prabhakar, K.R., Srikar, V.S., Babu, R.V.: Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs. In: Proc. of IEEE ICCV, Italy, pp. 4714–4722 (2017)

  35. Pennington, J., Socher, R., Manning, C.D.: GloVe: Global Vectors for Word Representation. In: Proc. of EMNLP, pp. 1532–1543 (2014)

  36. Penhu, G., Hauff, C.: What does BERT know about books, movies and music? Probing BERT for Conversational Recommendation. In: Proc. of ACM Recsys, Rio de Janeriro, Brazil, pp 388–397 (2020)

  37. Purushotham, S., Liu, Y., Kuo, C.-C.J.: Collaborative topic regression with social matrix factorization for recommendation systems, In: Proc. of IEEE ICML, Edinburgh, Scotland, UK, pp 759–766 (2012)

  38. Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Proc. of NIPS, pp. 1257–1264 (2008)

  39. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proc. of ICLR (2015)

  40. Szegedy, C., Vanhoucke, V., Ioffe, S., Shelens, J.: Rethinking the inception architecture for computer vision. In: Proc. of IEEE CVPR, pp. 2818–2826 (2016)

  41. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.: Going Deeper with Convolutions. In: Proc. of IEEE CVPR (2014)

  42. Unger, M., Tuzhilin, A., Livne, A.: Context-aware recommendations based on deep learning frameworks. ACM Trans. Manage. Inform. Syst. 11, 1–15 (2020). https://doi.org/10.1145/3386243

    Article  Google Scholar 

  43. Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and Tell: A neural image caption generator. in: Proc. of IEEE CVPR, pp. 3156–3164 (2015)

  44. Wang, W., Liu, J., Yang, Z., Kong, X., Xia, F.: Sustainable collaborator recommendation based on conference closure. IEEE Trans. Comput. Soc. Syst. 6(2), 311–322 (2019)

    Article  Google Scholar 

  45. Wang, Z., Chen, H., Li, Z., Lin, K., Jiang, N., Xia, F.: VRConvMF: Visual recurrent convolutional matrix factorization for movie recommendation. IEEE Transactions on Emerging Topics in Computational Intelligence, pp 1–11 https://doi.org/10.1109/TETCI.2021.3102619 (2021)

  46. Wan, S., Ding, S., Chen, C.: Edge computing enabled video segmentation for real-time traffic monitoring in internet of vehicles. Pattern Recogn. 121, 108146 (2022)

    Article  Google Scholar 

  47. Wang, H., Wang, N., Yeung, D.-Y.: Collaborative deep learning for recommender systems, In: Proc. of ACM SIGKDD, Sydney, NSW, Australia, pp 1235–1244 (2015)

  48. Xia, F., Ahmed, A.M., Yang, L.T., Ma, J., Rodrigues, J.J.: Exploiting social relationship to enable efficient replica allocation in ad-hoc social networks. IEEE Transactions on Parallel and Distributed Systems 25(12), 3167–3176 (2014)

    Article  Google Scholar 

  49. Xia, F., Ahmed, A.M., Yang, L.T., Luo, Z.: Community-Based Event dissemination with optimal load balancing. IEEE Trans. Comput. 64(7), 1857–1869 (2014)

    Article  MathSciNet  Google Scholar 

  50. Xia, F., Asabere, N.Y., Ahmed, A.M., Li, J., Kong, X.: Mobile multimedia recommendation in smart communities: a survey. IEEE Access 1(1), 606–624 (2013)

    Google Scholar 

  51. Zarzour, H., Al-Sharif, Z., Al-Ayyoub, M., Jararweh, Y. (2018)

  52. Zhao, L., Lu, Z., Pan, S. J., Yang, Q.: Matrix factorization+ for movie recommendation. In: Proc. of IJCAI, pp. 3945–3951 (2016)

  53. Zhao, W., Wang, B., Yang, M., Ye, J., Zhao, Z., Chen, X., Shen, Y.: Leveraging long and Short-Term information in Content-Aware movie recommendation via adversarial training. IEEE Trans. Cybern. 50(11), 4680–4693 (2019)

    Article  Google Scholar 

  54. Zhang, H., Qin, X., Zheng, H.: Research on contextual recommendation system of agricultural science and technology resource based on user portrait. Journal of Physics: Conference Series 1693 (1)

  55. Zhang, J., Yang, Y., Zhuo, L., Tian, Q., Liang, X.: Personalized recommendation of social images by constructing a user interest tree with deep features and tag trees. IEEE Trans. Multimedia 21(11), 2762–2775 (2019)

    Article  Google Scholar 

  56. Zhou, H., Wu, T., Zhang, H., Wu, J.: Incentive-driven deep reinforcement learning for content caching and D2D Offloading. IEEE Journal on Selected Areas in Communication 39(8), 2445–2460 (2021)

    Article  Google Scholar 

  57. Zhou, H., Chen, X., He, S., Chen, J., Wu, J.: DRAIM: A novel delay-constraint and reverse auction-based incentive mechanism for WiFi Offloading. IEEE Journal on Selected Areas in Communication 38(4), 711–722 (2020)

    Article  Google Scholar 

  58. Zhou, X., He, J., Huang, G., Zhang, Y.: SVD-Based incremental approaches for recommender systems. J. Comput. Syst. Sci. 81, 717–733 (2015)

    Article  MathSciNet  Google Scholar 

  59. Zhu, Q., Wang, D.: A SVM recommendation IoT model based on similarity evaluation and collaborative filtering of multi-angle knowledge units. Int. J. Comput. Appl. 42(3), 278–281 (2020)

    Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC grants (No.61772551), the Open Project of Minjiang University (No.MJUKF-JK202003) and the Major Scientific and Technological Projects of CNPC under Grant ZD2019-183-003.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xia.

Ethics declarations

Conflict of Interests

All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Special Issue on Resource Management at the Edge for Future Web, Mobile and IoT Applications Guest Editors: Qiang He, Fang Dong, Chenshu Wu, and Yun Yang

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Li, Z., Wang, Z. et al. Edge data based trailer inception probabilistic matrix factorization for context-aware movie recommendation. World Wide Web 25, 1863–1882 (2022). https://doi.org/10.1007/s11280-021-00974-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11280-021-00974-4

Keywords

Navigation