[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Protective Effects of ACY-1215 Against Chemotherapy-Related Cognitive Impairment and Brain Damage in Mice

  • Brief Communication
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Chemotherapy-related cognitive impairment (CRCI) is a potential long-term side effect during cancer treatment. There are currently no effective treatments for CRCI. Reduction or inhibition of histone deacetylase 6 (HDAC6) has been considered a possible therapeutic strategy for cognitive deficits. HDAC6 inhibition recently has been shown to reverse chemotherapy-induced peripheral neuropathy effectively. In the present study, we examined the effect of HDAC6 inhibitor ACY-1215 (Ricolinostat) on cisplatin-induced brain damage and cognitive deficits in mice. Our results showed that ACY-1215 ameliorated behavioral deficits and dendritic spine loss and increased synaptic density in cisplatin-treated mice. Mechanistically, HDAC6 inhibitor ACY-1215 enhanced α-tubulin acetylation in the hippocampus of cisplatin-treated mice. Furthermore, ACY-1215 recovered cisplatin-induced impaired mitochondrial transport and mitochondrial dysfunction in the hippocampus. Our results suggest that inhibition of HDAC6 improves established cisplatin-induced cognitive deficits by the restoration of mitochondrial and synaptic impairments. These results offer prospective approaches for CRCI, especially because ACY1215 currently serves as an add-on cancer therapy during clinical trials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

CRCI:

Chemotherapy-related cognitive impairment

HDAC6:

Histone deacetylase 6

MMP:

Mitochondrial membrane potential

mtDNA:

Mitochondria DNA

MWM:

Morris water maze

nDNA:

Nuclear DNA

NOR:

Novel object recognition

ROS:

Reactive oxygen species

PSD95:

Postsynaptic density protein 95

vGlut1:

Vesicular glutamate transporter type 1

References

  1. de Moor JS, Mariotto AB, Parry C, Alfano CM, Padgett L, Kent EE, Forsythe L, Scoppa S, Hachey M, Rowland JH (2013) Cancer survivors in the United States: prevalence across the survivorship trajectory and implications for care. Cancer Epidemiol Biomark Prev 22:561–570

    Google Scholar 

  2. Argyriou AA, Assimakopoulos K, Iconomou G, Giannakopoulou F, Kalofonos HP (2011) Either called "chemobrain" or "chemofog," the long-term chemotherapy-induced cognitive decline in cancer survivors is real. J Pain Symptom Manage 41:126–139

    PubMed  Google Scholar 

  3. Weiss B (2008) Chemobrain: a translational challenge for neurotoxicology. Neurotoxicology 29:891–898

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ahles TASaykin AJ (2007) Candidate mechanisms for chemotherapy-induced cognitive changes. Nat Rev Cancer 7:192–201

    Google Scholar 

  5. Screnci D, McKeage MJ, Galettis P, Hambley TW, Palmer BD, Baguley BC (2000) Relationships between hydrophobicity, reactivity, accumulation and peripheral nerve toxicity of a series of platinum drugs. Br J Cancer 82:966–972

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Koppen C, Reifschneider O, Castanheira I, Sperling M, Karst U, Ciarimboli G (2015) Quantitative imaging of platinum based on laser ablation-inductively coupled plasma-mass spectrometry to investigate toxic side effects of cisplatin. Metallomics 7:1595–1603

    CAS  PubMed  Google Scholar 

  7. Dzagnidze A, Katsarava Z, Makhalova J, Liedert B, Yoon MS, Kaube H, Limmroth V, Thomale J (2007) Repair capacity for platinum-DNA adducts determines the severity of cisplatin-induced peripheral neuropathy. J Neurosci 27:9451–9457

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Giurgiovich AJ, Diwan BA, Olivero OA, Anderson LM, Rice JM, Poirier MC (1997) Elevated mitochondrial cisplatin-DNA adduct levels in rat tissues after transplacental cisplatin exposure. Carcinogenesis 18:93–96

    CAS  PubMed  Google Scholar 

  9. Olivero OA, Semino C, Kassim A, Lopez-Larraza DM, Poirier MC (1995) Preferential binding of cisplatin to mitochondrial DNA of Chinese hamster ovary cells. Mutat Res 346:221–230

    CAS  PubMed  Google Scholar 

  10. Lomeli N, Di K, Czerniawski J, Guzowski JF, Bota DA (2017) Cisplatin-induced mitochondrial dysfunction is associated with impaired cognitive function in rats. Free Radic Biol Med 102:274–286

    CAS  PubMed  Google Scholar 

  11. Park HS, Kim CJ, Kwak HB, No MH, Heo JW, Kim TW (2018) Physical exercise prevents cognitive impairment by enhancing hippocampal neuroplasticity and mitochondrial function in doxorubicin-induced chemobrain. Neuropharmacology 133:451–461

    CAS  PubMed  Google Scholar 

  12. Chiu GS, Maj MA, Rizvi S, Dantzer R, Vichaya EG, Laumet G, Kavelaars A, Heijnen CJ (2017) Pifithrin-mu prevents cisplatin-induced chemobrain by preserving neuronal mitochondrial function. Cancer Res 77:742–752

    CAS  PubMed  Google Scholar 

  13. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP (2002) HDAC6 is a microtubule-associated deacetylase. Nature 417:455–458

    CAS  PubMed  Google Scholar 

  14. Zhang Y, Li N, Caron C, Matthias G, Hess D, Khochbin S, Matthias P (2003) HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22:1168–1179

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen S, Owens GC, Makarenkova H, Edelman DB (2010) HDAC6 regulates mitochondrial transport in hippocampal neurons. PLoS ONE 5:e10848

    PubMed  PubMed Central  Google Scholar 

  16. Zhang L, Liu C, Wu J, Tao JJ, Sui XL, Yao ZG, Xu YF, Huang L, Zhu H, Sheng SL, Qin C (2014) Tubastatin A/ACY-1215 improves cognition in Alzheimer's disease transgenic mice. J Alzheimers Dis 41:1193–1205

    CAS  PubMed  Google Scholar 

  17. Krukowski K, Ma J, Golonzhka O, Laumet GO, Gutti T, van Duzer JH, Mazitschek R, Jarpe MB, Heijnen CJ, Kavelaars A (2017) HDAC6 inhibition effectively reverses chemotherapy-induced peripheral neuropathy. Pain 158:1126–1137

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhou W, Kavelaars A, Heijnen CJ (2016) Metformin prevents cisplatin-induced cognitive impairment and brain damage in mice. PLoS ONE 11:e0151890

    PubMed  PubMed Central  Google Scholar 

  19. Santo L, Hideshima T, Kung AL, Tseng JC, Tamang D, Yang M, Jarpe M, van Duzer JH, Mazitschek R, Ogier WC, Cirstea D, Rodig S, Eda H, Scullen T, Canavese M, Bradner J, Anderson KC, Jones SS, Raje N (2012) Preclinical activity, pharmacodynamic, and pharmacokinetic properties of a selective HDAC6 inhibitor, ACY-1215, in combination with bortezomib in multiple myeloma. Blood 119:2579–2589

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Park H, Kang S, Nam E, Suh YH, Chang KA (2019) The protective effects of PSM-04 against beta amyloid-induced neurotoxicity in primary cortical neurons and an animal model of Alzheimer's disease. Front Pharmacol 10:2

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dragicevic N, Mamcarz M, Zhu Y, Buzzeo R, Tan J, Arendash GW, Bradshaw PC (2010) Mitochondrial amyloid-beta levels are associated with the extent of mitochondrial dysfunction in different brain regions and the degree of cognitive impairment in Alzheimer's transgenic mice. J Alzheimers Dis 20(Suppl 2):S535–S550

    PubMed  Google Scholar 

  22. Wang D, Liu X, Liu Y, Shen G, Zhu X, Li S (2017) Treatment effects of Cardiotrophin-1 (CT-1) on streptozotocin-induced memory deficits in mice. Exp Gerontol 92:42–45

    PubMed  Google Scholar 

  23. Wang D, Liu X, Liu Y, Li S, Wang C (2017) The effects of cardiotrophin-1 on early synaptic mitochondrial dysfunction and synaptic pathology in APPswe/PS1dE9 mice. J Alzheimers Dis 59:1255–1267

    CAS  PubMed  Google Scholar 

  24. Li SQ, Wang DM, Shu YJ, Wan XD, Xu ZS, Li EZ (2013) Proper heat shock pretreatment reduces acute liver injury induced by carbon tetrachloride and accelerates liver repair in mice. J Toxicol Pathol 26:365–373

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Zhang Z, Qin Y, Wu H, Lv Q, Chen X, Deng W (2013) A new method for Schwann-like cell differentiation of adipose derived stem cells. Neurosci Lett 551:79–83

    CAS  PubMed  Google Scholar 

  26. Choi H, Kim HJ, Kim J, Kim S, Yang J, Lee W, Park Y, Hyeon SJ, Lee DS, Ryu H, Chung J, Mook-Jung I (2017) Increased acetylation of Peroxiredoxin1 by HDAC6 inhibition leads to recovery of Abeta-induced impaired axonal transport. Mol Neurodegener 12:23

    PubMed  PubMed Central  Google Scholar 

  27. Govindarajan N, Rao P, Burkhardt S, Sananbenesi F, Schluter OM, Bradke F, Lu J, Fischer A (2013) Reducing HDAC6 ameliorates cognitive deficits in a mouse model for Alzheimer's disease. EMBO Mol Med 5:52–63

    CAS  PubMed  Google Scholar 

  28. Pareyson D, Piscosquito G, Moroni I, Salsano E, Zeviani M (2013) Peripheral neuropathy in mitochondrial disorders. Lancet Neurol 12:1011–1024

    CAS  PubMed  Google Scholar 

  29. Bindu PS, Govindaraju C, Sonam K, Nagappa M, Chiplunkar S, Kumar R, Gayathri N, Bharath MM, Arvinda HR, Sinha S, Khan NA, Govindaraj P, Nunia V, Paramasivam A, Thangaraj K, Taly AB (2016) Peripheral neuropathy in genetically characterized patients with mitochondrial disorders: A study from south India. Mitochondrion 27:1–5

    CAS  PubMed  Google Scholar 

  30. Olivero OA, Chang PK, Lopez-Larraza DM, Semino-Mora MC, Poirier MC (1997) Preferential formation and decreased removal of cisplatin-DNA adducts in Chinese hamster ovary cell mitochondrial DNA as compared to nuclear DNA. Mutat Res 391:79–86

    CAS  PubMed  Google Scholar 

  31. Podratz JL, Knight AM, Ta LE, Staff NP, Gass JM, Genelin K, Schlattau A, Lathroum L, Windebank AJ (2011) Cisplatin induced mitochondrial DNA damage in dorsal root ganglion neurons. Neurobiol Dis 41:661–668

    CAS  PubMed  Google Scholar 

  32. Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z, Cullen KJ (2006) Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. Clin Cancer Res 12:5817–5825

    CAS  PubMed  Google Scholar 

  33. Martins NM, Santos NA, Curti C, Bianchi ML, Santos AC (2008) Cisplatin induces mitochondrial oxidative stress with resultant energetic metabolism impairment, membrane rigidification and apoptosis in rat liver. J Appl Toxicol 28:337–344

    CAS  PubMed  Google Scholar 

  34. Zsengeller ZK, Ellezian L, Brown D, Horvath B, Mukhopadhyay P, Kalyanaraman B, Parikh SM, Karumanchi SA, Stillman IE, Pacher P (2012) Cisplatin nephrotoxicity involves mitochondrial injury with impaired tubular mitochondrial enzyme activity. J Histochem Cytochem 60:521–529

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Chiou CT, Wang KC, Yang YC, Huang CL, Yang SH, Kuo YH, Huang NK (2018) Liu Jun Zi Tang-A: potential, multi-herbal complementary therapy for chemotherapy-induced neurotoxicity. Int J Mol Sci 19:1258

    PubMed Central  Google Scholar 

  36. d'Ydewalle C, Krishnan J, Chiheb DM, Van Damme P, Irobi J, Kozikowski AP, Vanden Berghe P, Timmerman V, Robberecht W, Van Den Bosch L (2011) HDAC6 inhibitors reverse axonal loss in a mouse model of mutant HSPB1-induced Charcot-Marie-Tooth disease. Nat Med 17:968–974

    CAS  PubMed  Google Scholar 

  37. Dompierre JP, Godin JD, Charrin BC, Cordelieres FP, King SJ, Humbert S, Saudou F (2007) Histone deacetylase 6 inhibition compensates for the transport deficit in Huntington's disease by increasing tubulin acetylation. J Neurosci 27:3571–3583

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Godena VK, Brookes-Hocking N, Moller A, Shaw G, Oswald M, Sancho RM, Miller CC, Whitworth AJ, De Vos KJ (2014) Increasing microtubule acetylation rescues axonal transport and locomotor deficits caused by LRRK2 Roc-COR domain mutations. Nat Commun 5:5245

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Bulinski JC (2007) Microtubule modification: acetylation speeds anterograde traffic flow. Curr Biol 17:R18–R20

    CAS  PubMed  Google Scholar 

  40. Reed NA, Cai D, Blasius TL, Jih GT, Meyhofer E, Gaertig J, Verhey KJ (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16:2166–2172

    CAS  PubMed  Google Scholar 

  41. Guedes-Dias P, de Proenca J, Soares TR, Leitao-Rocha A, Pinho BR, Duchen MR, Oliveira JM (2015) HDAC6 inhibition induces mitochondrial fusion, autophagic flux and reduces diffuse mutant huntingtin in striatal neurons. Biochim Biophys Acta 1852:2484–2493

    CAS  PubMed  Google Scholar 

  42. Hollenbeck PJSaxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419

    Google Scholar 

  43. Liu XA, Rizzo V, Puthanveettil SV (2012) Pathologies of axonal transport in neurodegenerative diseases. Transl Neurosci 3:355–372

    PubMed  PubMed Central  Google Scholar 

  44. Lin MTBeal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795

    Google Scholar 

  45. Riemer JKins S (2013) Axonal transport and mitochondrial dysfunction in Alzheimer's disease. Neurodegener Dis 12:111–124

    Google Scholar 

  46. Winocur G, Berman H, Nguyen M, Binns MA, Henkelman M, van Eede M, Piquette-Miller M, Sekeres MJ, Wojtowicz JM, Yu J, Zhang H, Tannock IF (2018) Neurobiological mechanisms of chemotherapy-induced cognitive impairment in a transgenic model of breast. Cancer Neurosci 369:51–65

    CAS  Google Scholar 

Download references

Acknowledgements

The present work was supported by National Natural Science Foundation of China (81601225 and U1804174), Henan Provincial Key Research and Development and Promotion Project (192102310081), Science and Technology Innovation Talents in the Universities of Henan Province (20HASTIT044), Science & Technology Innovation teams in Universities of Henan Province (18IRTSTHN026), Outstanding Youth of Science and Technology Innovation in Henan Province (184100510006), Student Research Training Program of Henan University of Science and Technology (2019314).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dongmei Wang or Sanqiang Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Effects of HDAC6 inhibitor ACY-1215 treatment on cisplatin-induced loss of body weight. The percentage of baseline body weight. All data are presented as mean ± S.E.M. (n = 12–14, * p < 0.05, ** p < 0.01, Control mice vs. cisplatin-treated mice; #p < 0.05, ##p < 0.01, ACY-1215 mice vs. Cisplatin/ACY-1215 mice). Electronic supplementary material 1 (TIF 186 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Wang, B., Liu, Y. et al. Protective Effects of ACY-1215 Against Chemotherapy-Related Cognitive Impairment and Brain Damage in Mice. Neurochem Res 44, 2460–2469 (2019). https://doi.org/10.1007/s11064-019-02882-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-019-02882-6

Keywords

Navigation