Abstract
Here, we describe design and synthesis of twelve novel compounds bearing primaquine motif and hydroxy- or halogenamine linked by an urea or bis-urea spacer. Preparation of ureas 3a–f started with the conversion of primaquine to benzotriazolide 2 and aminolysis of the later compound by 4-(2-aminoethyl)phenol or amino alcohols bearing fluorine atom, cycloalkyl or trifluoromethyl group under microwave irradiation. The four-step sequence leading to bis-ureas 6a–f included preparation of benzotriazolide 2 and two intermediates, semicarbazide 4 and benzotriazole bis-urea 5, which upon aminolysis with the same aminophenol or amino alcohols gave the title compounds. Antimycobacterial screening detected three active compounds against Mycobacterium marinum and M. tuberculosis, namely 3b, 3f and 6f, derived from cyclobutyl amino alcohol or amino phenol.
Graphical abstract
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Džimbeg G, Zorc B, Kralj M, Ester K, Pavelić K, Balzarini J, De Clercq E, Mintas M (2008) The novel primaquine derivatives of N-alkyl, cycloalkyl or aryl urea: synthesis, cytostatic and antiviral activity evaluations. Eur J Med Chem 43:1180–1187. https://doi.org/10.1016/j.ejmech.2007.09.001
Šimunović M, Perković I, Zorc B, Ester K, Kralj M, Hadjipavlou-Litina D, Pontiki E (2009) Urea and carbamate derivatives of primaquine: synthesis, cytostatic and antioxidant activities. Bioorg Med Chem 17:5605–5613. https://doi.org/10.1016/j.bmc.2009.06.030
Perković I, Tršinar S, Žanetić J, Kralj M, Martin-Kleiner I, Balzarini J, Hadjipavlou-Litina D, Katsori AM, Zorc B (2013) Novel 1-acyl-4-substituted semicarbazide derivatives of primaquine—synthesis, cytostatic, antiviral and antioxidative studies. J Enzym Inhib Med Chem 28:601–610. https://doi.org/10.3109/14756366.2012.663366
Pavić K, Perković I, Cindrić M, Pranjić M, Martin-Kleiner I, Kralj M, Schols D, Hadjipavlou-Litina D, Katsori A-M, Zorc B (2014) Novel semicarbazides and ureas of primaquine with bulky aryl or hydroxyalkyl substituents: synthesis, cytostatic and antioxidative activity. Eur J Med Chem 86:502–514. https://doi.org/10.1016/j.ejmech.2014.09.013
Kedzierska E, Orzelska J, Perković I, Knežević D, Fidecka S, Kaiser M, Zorc B (2016) Pharmacological activity of primaquine ureas and semicarbazides on central nervous system in mice and antimalarial activity in vitro. Fund Clin Pharmacol 30:58–69. https://doi.org/10.1111/fcp.12161
Perković I, Antunović M, Marijanović I, Pavić K, Ester K, Kralj M, Vlainić J, Kosalec I, Schols D, Hadjipavlou-Litina D, Pontiki E, Zorc B (2016) Novel urea and bis-urea primaquine derivatives with hydroxyphenyl and halogenphenyl substituents: synthesis and biological evaluation. Eur J Med Chem 124:622–636. https://doi.org/10.1016/j.ejmech.2016.08.021
Pavić K, Perković I, Gilja P, Kozlina F, Ester K, Kralj M, Schols D, Hadjipavlou-Litina D, Pontiki E, Zorc B (2016) Design, synthesis and biological evaluation of novel primaquine-cinnamic acid conjugates of amide and acylsemicarbazide type. Molecules 21:1629–1653. https://doi.org/10.3390/molecules21121629
Pavić K, Perković I, Pospíšilová Š, Machado M, Fontinha D, Prudêncio M, Jampilek J, Coffey A, Endersen L, Rimac H, Zorc B (2018) Primaquine hybrids as promising antimycobacterial and antimalarial agents. Eur J Med Chem 143:769–779. https://doi.org/10.1016/j.ejmech.2017.11.083
Vlainić J, Kosalec I, Pavić K, Hadjipavlou-Litina D, Pontiki E, Zorc B (2018) Insights into biological activity of ureidoamides with primaquine and amino acid moieties. J Enzym Inhib Med Chem 33:376–382. https://doi.org/10.1080/14756366.2017.1423067
Levatić J, Pavić K, Perković I, Uzelac L, Ester K, Kralj M, Kaiser M, Rottmann M, Supek F, Zorc B (2018) Machine learning prioritizes synthesis of primaquine ureidoamides with high antimalarial activity and attenuated cytotoxicity. Eur J Med Chem 146:651–667. https://doi.org/10.1016/j.ejmech.2018.01.062
Mabeta P, Pavić K, Zorc B (2018) Insights into mechanism of antiproliferative effect of primaquine-cinnamic acid conjugates on MCF-7. Acta Pharm 68:337–348. https://doi.org/10.2478/acph-2018-0021
Eswaran S, Adhikari AV, Pal NK, Chowdhury IH (2009) Design and synthesis of some new quinoline-3-carbohydrazone derivatives as potential antimycobacterial agents. Bioorg Med Chem Lett 20:1040–1044. https://doi.org/10.1016/j.bmcl.2009.12.045
Eswaran S, Vasudeva Adhikari A, Chowdhury IH, Pal NK, Thomas KD (2010) New quinoline derivatives: synthesis and investigation of antibacterial and antituberculosis properties. Eur J Med Chem 45:3374–3383. https://doi.org/10.1016/j.ejmech.2010.04.022
Nava-Zuazo C, Estrada-Soto S, Guerrero-Alvarez J, León-Rivera I, Molina-Salinas GM, Said-Fernández S, Chan-Bacab MJ, Cedillo-Rivera R, Moo-Puc R, Mirón-López G, Navarrete-Vazquez G (2010) Design, synthesis, and in vitro antiprotozoal, antimycobacterial activities of N-{2-[(7-chloroquinolin-4-yl)amino]ethyl}ureas. Bioorg Med Chem 18:6398–6403. https://doi.org/10.1016/j.bmc.2010.07.008
Keri RS, Patil SA (2014) Quinoline: a promising antitubercular target. Biomed Pharmacother 68:1161–1175. https://doi.org/10.1016/j.biopha.2014.10.007
Singh S, Kaur G, Mangla V, Gupta MK (2015) Quinoline and quinolones: promising scaffolds for future antimycobacterial agents. J Enzyme Inhib Med Chem 30:492–504. https://doi.org/10.3109/14756366.2014.930454
Kos J, Zadrazilova I, Nevin E, Soral M, Gonec T, Kollar P, Oravec M, Coffey A, O´Mahony J, Liptaj T, Kralova K, Jampilek J (2015) Ring-substituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg Med Chem 23:4188–4196. https://doi.org/10.1016/j.bmc.2015.06.047
Tseng C-H, Tung C-W, Wu C-H, Tzeng C-C, Chen Y-H, Hwang T-L, Chen Y-L (2017) Discovery of indeno[1,2-c]quinoline derivatives as potent dual antituberculosis and anti-inflammatory agents. Molecules 22:1001–1004. https://doi.org/10.3390/molecules22061001
Casall JJ, Asis SE (2017) Natural and synthetic quinoline derivatives as anti-tuberculosis agents. Austin Tuberc Res Treat 2:1007–1010
Chetty S, Ramesh M, Singh-Pillay A, Soliman MES (2017) Recent advancements in the development of anti-tuberculosis drugs. Bioorg Med Chem Lett 27:370–386. https://doi.org/10.1016/j.bmcl.2016.11.084
Tiberi S, Muñoz-Torrico M, Duarte R, Dalcolmo M, D’Ambrosio L, Migliori GB (2018) New drugs and perspectives for new anti-tuberculosis regimens. Pulmonology 24:86–98. https://doi.org/10.1016/j.rppnen.2017.10.009
Bocanegra-García V, García A, Palma-Nicolás JP, Palos I, Rivera G (2011) Antitubercular drugs development: recent advances in selected therapeutic targets and rational drug design. In: Rundfeldt C (ed) Drug development—a case study based insight into modern strategies. InTech, Available http://www.intechopen.com/books/drug-developmenta-case-study-based-insight-into-modern-strategies/antitubercular-drugs-development-recent-advances-inselected-therapeutic-targets-and-rational-drug-d
Cunico W, Gomes CRB, Ferreira MLG, Ferreira TG, Cardinot D, de Souza MVN, Lourenço MCS (2011) Synthesis and anti-mycobacterial activity of novel amino alcohol derivatives. Eur J Med Chem 46:974–978. https://doi.org/10.1016/j.ejmech.2011.01.004
Quiliano M, Pabón A, Moles E, Bonilla-Ramirez L, Fabing I, Fong KY, Nieto-Aco DA, Wright DW, Pizarro JC, Vettorazzi A, López de Cerain A, Deharo E, Fernández-Busquets X, Garavito G, Aldana I, Galiano S (2018) Structure-activity relationship of new antimalarial 1-aryl-3-substituted propanol derivatives: synthesis, preliminary toxicity profiling, parasite life cycle stage studies, target exploration, and targeted delivery. Eur J Med Chem 152:489–514. https://doi.org/10.1016/j.ejmech.2018.04.038
Lv Z, Chu Y, Wang Y (2015) HIV protease inhibitors: a review of molecular selectivity and toxicity. HIV AIDS (Auckl) 7:95–104. https://doi.org/10.2147/HIV.S79956
Jayaprakash S, Iso Y, Wan B, Franzblau SG, Kozikowski AP (2006) Design, synthesis, and SAR studies of mefloquine-based ligands as potential antituberculosis agents. ChemMedChem 1:593–597. https://doi.org/10.1002/cmdc.200600010
Krieger D, Vesenbeckh S, Schönfeld N, Bettermann G, Bauer TT, Rüssmann H, Mauch H (2015) Mefloquine as a potential drug against multidrug-resistant tuberculosis. Eur Respir J 46:1503–1505. https://doi.org/10.1183/13993003.00321-2015
Gonçalves RS, Kaiser CR, Lourenço MC, de Souza MV, Wardell JL, Wardell SM, da Silva AD (2010) Synthesis and antitubercular activity of new mefloquine-oxazolidine derivatives. Eur J Med Chem 45:6095–6100. https://doi.org/10.1016/j.ejmech.2010.09.024
Gonçalves RSB, Kaiser CR, Lourenço MCS, Bezerra FAFM, de Souza MVN, Wardell JL, Wardell SMSV, de Henriques MGMO, Costa T (2012) Mefloquine-oxazolidine derivatives, derived from mefloquine and arenecarbaldehydes: in vitro activity including against the multidrug-resistant tuberculosis strain T113. Bioorg Med Chem 20:243–248. https://doi.org/10.1016/j.bmc.2011.11.006
Mao J, Yuan H, Wang Y, Wan B, Pak D, He R, Franzblau SG (2010) Synthesis and antituberculosis activity of novel mefloquine-isoxazole carboxylic esters as prodrugs. Bioorg Med Chem Lett 20:1263–1268. https://doi.org/10.1016/j.bmcl.2009.11.105
Navarrete-Vázquez G, Molina-Salinas GM, Duarte-Fajardo ZV, Vargas-Villarreal V, Estrada-Soto S, González-Salazar F, Hernández-Núñez E, Said-Fernández S (2007) Synthesis and antimycobacterial activity of 4-(5-substituted-1,3,4-oxadiazol-2-yl)pyridines. Bioorg Med Chem 15:5502–5508. https://doi.org/10.1016/j.bmc.2007.05.053
Reddy V (2015) Organofluorine compounds in biology and medicine, 1st edn. Elsevier, Amsterdam
Chemicalize (2017) ChemAxon Ltd. Available http://www.chemicalize.org
Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Del Rev 46:3–26
Zhao YH, Abraham MH, Le J, Hersey A, Luscombe CN, Beck G, Sherborne B, Cooper I (2002) Rate-limited steps of human oral absorption and QSAR studies. Pharm Res 19:1446–1457
Daina A, Michielin O, Zoete V (2017) SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 7:42717. https://doi.org/10.1038/srep42717
Acharya N, Varshney U (2002) Biochemical properties of single-stranded DNA-binding protein from Mycobacterium smegmatis, a fast-growing Mycobacterium and its physical and functional interaction with uracil DNA glycosylases. J Mol Biol 318:1251–1264
Matveychuk A, Fuks L, Priess R, Hahim I, Shitrit D (2012) Clinical and radiological features of Mycobacterium kansasii and other NTM infections. Respir Med 106:1472–1477. https://doi.org/10.1016/j.rmed.2012.06.023
Haenen OL, Evans JJ, Berthe F (2013) Bacterial infections from aquatic species: potential for and prevention of contact zoonoses. Rev Sci Tech 32:497–507
Gauthier DT (2015) Bacterial zoonoses of fishes: a review and appraisal of evidence for linkages between fish and human infections. Vet J 203:27–35. https://doi.org/10.1016/j.tvjl.2014.10.028
Zheng H, Lu L, Wang B, Pu S, Zhang X, Zhu G, Shi W, Zhang L, Wang H, Wang S, Zhao G, Zhang Y (2008) Genetic basis of virulence attenuation revealed by comparative genomic analysis of Mycobacterium tuberculosis strain H37Ra versus H37Rv. PLoS ONE 3:e2375. https://doi.org/10.1371/journal.pone.0002375
Jena L, Kashikar S, Kumar S, Harinath BC (2013) Comparative proteomic analysis of Mycobacterium tuberculosis strain H37Rv versus H37Ra. Int J Mycobacteriol 2:220–226. https://doi.org/10.1016/j.ijmyco.2013.10.004
Kalčić I, Zovko M, Jadrijević-Mladar Takač M, Zorc B, Butula I (2003) Synthesis and reactions of some azolecarboxylic acid derivatives. Croat Chem Acta 76:217–228
Schwalbe R, Steele-Moore L, Goodwin AC (eds) (2007) Antimicrobial susceptibility testing protocols. CRC Press, Boca Raton
Acknowledgements
The study was supported by the Croatian Science Foundation through the research project IP-09-2014-1501, Comenius University in Bratislava (Grant UK/229/2018), Faculty of Pharmacy of Comenius University in Bratislava (Grant FaFUK/9/2018) and SANOFI-AVENTIS Pharma Slovakia, s.r.o. We thank Marijeta Kralj and Lidija Uzelac for performing cytotoxicity evaluation.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Pavić, K., Rajić, Z., Michnová, H. et al. Second generation of primaquine ureas and bis-ureas as potential antimycobacterial agents. Mol Divers 23, 657–667 (2019). https://doi.org/10.1007/s11030-018-9899-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11030-018-9899-z