[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Epoxidation of Residual Soybean Oil and Thermal Characterization of Residual Epoxidized Soybean Oil Crosslinked with Fumaric Acid

  • Research
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

The use of waste cooking oil (WVOs) for technological applications is a required alternative that contributes to the principles of the circular economy and demands of replacement of fossil sources. This work explores the epoxidation of residual soybean oil (RSO) from frying and investigates the crosslinking of residual epoxidized soybean oil (RESO) in contrast to the crosslinking of virgin epoxidized soybean oil (ESO), using fumaric acid (FMA). The curing and degradation kinetics of RESO/FMA and ESO/FMA compounds were investigated for molar ratios 1:0.45 and 1:0.70. RESO/FMA composites showed higher curing activation energies (Eac) during crosslinking, and higher degradation activation energies (Ead) given the greater thermal stability, been able to replace virgin ESO in epoxy resins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Sharmin E, Zafar F, Akram D et al (2015) Recent advances in vegetable oils based environment friendly coatings: a review. Ind Crops Prod 76:215–229. https://doi.org/10.1016/j.indcrop.2015.06.022

    Article  CAS  Google Scholar 

  2. Zhou C, Zhang L, Yang Z et al (2022) Synthesis and characterization of carboxymethyl chitosan/epoxidized soybean oil based conjugate catalyed by UV light, and its application as drug carrier for fusarium wilt. Int J Biol Macromol 212:11–19. https://doi.org/10.1016/j.ijbiomac.2022.05.118

    Article  PubMed  CAS  Google Scholar 

  3. Pour-Esmaeil S, Sharifi-Sanjani N, Khoee S, Taheri-Qazvini N (2020) Biocompatible chemical network of α-cellulose-ESBO (epoxidized soybean oil) scaffold for tissue engineering application. Carbohydr Polym 241:116322. https://doi.org/10.1016/j.carbpol.2020.116322

    Article  PubMed  CAS  Google Scholar 

  4. Wimonsiri Intarabumrung S, Kuntharin V, Harnchana et al (2022) Facile synthesis of Biobased Polyamide derived from Epoxidized Soybean Oil as a high-efficiency Triboelectric Nanogenerator. ACS Sustain Chem Eng 10:13680–13691. https://doi.org/10.1021/acssuschemeng.2c03592

    Article  CAS  Google Scholar 

  5. Duan Z, Hu M, Jiang S et al (2022) Cocuring of Epoxidized Soybean Oil-Based Wood Adhesives and the enhanced bonding performance by plasma treatment of Wood surfaces. ACS Sustain Chem Eng 10:3363–3372. https://doi.org/10.1021/acssuschemeng.2c00130

    Article  CAS  Google Scholar 

  6. Huan S, Taylor DC, Zhang M (2023) Bioengineering of Soybean Oil and its impact on agronomic traits. Int J Mol Sci 24:2256–2256. https://doi.org/10.3390/ijms24032256

    Article  CAS  Google Scholar 

  7. Msanne J, Kim H, Cahoon EB (2020) Biotechnology tools and applications for development of oilseed crops with healthy vegetable oils. Biochimie 178:4–14. https://doi.org/10.1016/j.biochi.2020.09.020

    Article  PubMed  CAS  Google Scholar 

  8. Cai C, Dai H, Chen R et al (2008) Studies on the kinetics ofin situ epoxidation of vegetable oils. Eur J Lipid Sci Technol 110:341–346. https://doi.org/10.1002/ejlt.200700104

    Article  CAS  Google Scholar 

  9. Santacesaria E, Turco R, Russo V et al (2020) Kinetics of Soybean Oil Epoxidation in a Semibatch Reactor. Ind Eng Chem Res. https://doi.org/10.1021/acs.iecr.0c04530

    Article  Google Scholar 

  10. Wu Z, Nie Y, Chen W et al (2016) Mass transfer and reaction kinetics of soybean oil epoxidation in a formic acid-autocatalyzed reaction system. Can J Chem Eng 94:1576–1582. https://doi.org/10.1002/cjce.22526

    Article  CAS  Google Scholar 

  11. Rafiq M, Lv YZ, Zhou Y et al (2015) Use of vegetable oils as transformer oils– a review. Renew Sustain Energy Rev 52:308–324. https://doi.org/10.1016/j.rser.2015.07.032

    Article  CAS  Google Scholar 

  12. Lligadas G, Ronda JC, Galià M, Cádiz V (2013) Renewable polymeric materials from vegetable oils: a perspective. Mater Today 16:337–343. https://doi.org/10.1016/j.mattod.2013.08.016

    Article  CAS  Google Scholar 

  13. Raghavachar R, Letasi RJ, Kola PV et al (1999) Rubber-toughening epoxy thermosets with epoxidized crambe oil. J Am Oil Chemists’ Soc 76:511–516. https://doi.org/10.1007/s11746-999-0033-3

    Article  CAS  Google Scholar 

  14. Tan SG, Chow WS (2010) Biobased Epoxidized Vegetable oils and its greener epoxy blends: a review. Polym-Plast Technol Eng 49:1581–1590. https://doi.org/10.1080/03602559.2010.512338

    Article  CAS  Google Scholar 

  15. ZAHER FA, NOMANY HM (1988) Vegetable oils as Lubricants. Vegetable oils as Lubricants 39:235–238

    CAS  Google Scholar 

  16. Nichollas Guimarães Jaques, Jany J, Silva S et al (2020) New approaches of curing and degradation on epoxy/eggshell composites. Compos Part B: Eng 196:108125–108125. https://doi.org/10.1016/j.compositesb.2020.108125

    Article  CAS  Google Scholar 

  17. Jaques NG, William de Lima Souza J, Popp M et al (2020) Kinetic investigation of eggshell powders as biobased epoxy catalyzer. Compos Part B: Eng 183:107651. https://doi.org/10.1016/j.compositesb.2019.107651

    Article  CAS  Google Scholar 

  18. Fombuena V, L S-N MDS et al (2012) Study of the properties of Thermoset materials derived from Epoxidized Soybean Oil and protein fillers. J Am Oil Chemists’ Soc 90:449–457. https://doi.org/10.1007/s11746-012-2171-2

    Article  CAS  Google Scholar 

  19. Sivashunmugam Sankaranarayanan, Sharma A, Srinivasan K (2015) CoCuAl layered double hydroxides– efficient solid catalysts for the preparation of industrially important fatty epoxides. Catal Sci Technol 5:1187–1197. https://doi.org/10.1039/c4cy01138d

    Article  Google Scholar 

  20. Kurańska M, Niemiec M (2020) Cleaner Production of Epoxidized Cooking Oil using a heterogeneous Catalyst. Catalysts 10:1261. https://doi.org/10.3390/catal10111261

    Article  CAS  Google Scholar 

  21. Chen Y, Xi Z, Zhao L (2016) New bio-based polymeric thermosets synthesized by ring-opening polymerization of epoxidized soybean oil with a green curing agent. Eur Polymer J 84:435–447. https://doi.org/10.1016/j.eurpolymj.2016.08.038

    Article  CAS  Google Scholar 

  22. Fernandes FC, Kirwan K, Lehane D, Coles SR (2017) Epoxy resin blends and composites from waste vegetable oil. Eur Polymer J 89:449–460. https://doi.org/10.1016/j.eurpolymj.2017.02.005

    Article  CAS  Google Scholar 

  23. Nicolás Simón, Richard T, Dourdan J et al (2021) Shape memory epoxy vitrimers based on waste frying sunflower oil. J Appl Polym Sci 138:50904–50904. https://doi.org/10.1002/app.50904

    Article  CAS  Google Scholar 

  24. Minh-Tan Ton‐That, Ngo T-D, Ding P et al (2004) Epoxy nanocomposites: analysis and kinetics of cure. Polym Eng Sci 44:1132–1141. https://doi.org/10.1002/pen.20106

    Article  CAS  Google Scholar 

  25. Kumar S, Samal SK, Mohanty S, Nayak SK (2016) Recent development of Biobased Epoxy resins: a review. Polym-Plast Technol Eng 57:133–155. https://doi.org/10.1080/03602559.2016.1253742

    Article  CAS  Google Scholar 

  26. Favero D, Victória RR, Marcon, Barcellos T et al (2019) Renewable polyol obtained by microwave-assisted alcoholysis of epoxidized soybean oil: Preparation, thermal properties and relaxation process. J Mol Liq 285:136–145. https://doi.org/10.1016/j.molliq.2019.04.078

    Article  CAS  Google Scholar 

  27. Souza JW, de Jaques L, Popp NG M, et al (2019) Optimization of Epoxy Resin: An Investigation of Eggshell as a Synergic Filler. Materials 12:1489. https://doi.org/10.3390/ma12091489

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Madhu S, Devarajan Y, Natrayan L (2023) Effective utilization of waste sugarcane bagasse filler-reinforced glass fibre epoxy composites on its mechanical properties - waste to sustainable production. Biomass Convers Biorefinery. https://doi.org/10.1007/s13399-023-03792-y

    Article  Google Scholar 

  29. Lette MJ, Ly EB, Ndiaye D et al (2018) Evaluation of Sawdust and Rice Husks as Fillers for Phenolic Resin Based Wood-Polymer composites. Open J Compos Mater 08:124–137. https://doi.org/10.4236/ojcm.2018.83010

    Article  CAS  Google Scholar 

  30. Freire MN, Holanda JNF (2006) Characterization of avian eggshell waste aiming its use in a ceramic wall tile paste. Cerâmica 52:240–244. https://doi.org/10.1590/S0366-69132006000400004

    Article  CAS  Google Scholar 

  31. Ji G, Zhu H, Qi C, Zeng M (2009) Mechanism of interactions of eggshell microparticles with epoxy resins. Polym Eng Sci 49:1383–1388. https://doi.org/10.1002/pen.21339

    Article  CAS  Google Scholar 

  32. Hassan TA, Rangari VK, Shaik J (2014) Value-added Biopolymer nanocomposites from Waste Eggshell-based CaCO3 nanoparticles as Fillers. ACS Sustain Chem Eng 2:706–717. https://doi.org/10.1021/sc400405v

    Article  CAS  Google Scholar 

  33. Saeb MR, Rastin H, Nonahal M et al (2018) Cure kinetics of epoxy/chicken eggshell biowaste composites: Isothermal calorimetric and chemorheological analyses. Prog Org Coat 114:208–215. https://doi.org/10.1016/j.porgcoat.2017.10.018

    Article  CAS  Google Scholar 

  34. de Quadros JV Jr, Giudici R (2016) Epoxidation of soybean oil at maximum heat removal and single addition of all reactants. Chem Eng Process 100:87–93. https://doi.org/10.1016/j.cep.2015.11.007

    Article  CAS  Google Scholar 

  35. Miyake Y, Yokomizo K, Matsuzaki N (1998) Rapid determination of iodine value by 1H nuclear magnetic resonance spectroscopy. J Am Oil Chemists’ Soc 75:15–19. https://doi.org/10.1007/s11746-998-0003-1

    Article  CAS  Google Scholar 

  36. Orellana-Coca C, Camocho S, Dietlind A et al (2006) Chemo-enzymatic epoxidation of linoleic acid: parameters influencing the reaction. Eur J Lipid Sci Technol 108:170–170. https://doi.org/10.1002/ejlt.200690008

    Article  CAS  Google Scholar 

  37. Barreto J, Camelo K, Nicholas Guimarães Jacques, Maria R (2023) On the curing and degradation of bisphenol A diglycidyl ether and epoxidized soybean oil compounds cured with itaconic and succinic acids. J Appl Polym Sci. https://doi.org/10.1002/app.53696

    Article  Google Scholar 

  38. (2019) Standard Test Method for Epoxy Content of Epoxy Resins. In: www.astm.org. https://www.astm.org/d1652-11r19.html

  39. McCutcheon JW, Industrial (1940) Eng Chem Anal Ed 12:465–465. https://doi.org/10.1021/ac50148a012

  40. Friedman HL (2007) Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J Polym Sci Part C: Polym Symposia 6:183–195. https://doi.org/10.1002/polc.5070060121

    Article  Google Scholar 

  41. Vyazovkin S (2006) Model-free kinetics. J Therm Anal Calorim 83:45–51. https://doi.org/10.1007/s10973-005-7044-6

    Article  CAS  Google Scholar 

  42. Doyle CD (1962) Estimating isothermal life from thermogravimetric data. J Appl Polym Sci 6:639–642. https://doi.org/10.1002/app.1962.070062406

    Article  CAS  Google Scholar 

  43. Lim ACR, Chin BLF, Jawad ZA, Hii KL (2016) Kinetic analysis of Rice Husk Pyrolysis using Kissinger-Akahira-Sunose (KAS) Method. Procedia Eng 148:1247–1251. https://doi.org/10.1016/j.proeng.2016.06.486

    Article  CAS  Google Scholar 

  44. COATS AW, REDFERN JP (1964) Kinetic parameters from Thermogravimetric Data. Nature 201:68–69. https://doi.org/10.1038/201068a0

    Article  CAS  Google Scholar 

  45. Nayak PK, Dash U, Rayaguru K, Krishnan KR (2015) Physio-Chemical changes during repeated frying of Cooked Oil: a review. J Food Biochem 40:371–390. https://doi.org/10.1111/jfbc.12215

    Article  CAS  Google Scholar 

  46. Huang X, Yang X-X, Liu H et al (2019) Bio-based thermosetting epoxy foams from epoxidized soybean oil and rosin with enhanced properties. Ind Crops Prod 139:111540–111540. https://doi.org/10.1016/j.indcrop.2019.111540

    Article  CAS  Google Scholar 

  47. Wang H, Liu X, Liu B et al (2009) Synthesis of rosin-based flexible anhydride-type curing agents and properties of the cured epoxy. Polym Int 58:1435–1441. https://doi.org/10.1002/pi.2680

    Article  CAS  Google Scholar 

  48. Ma Q, Liu X, Zhang R et al (2013) Synthesis and properties of full bio-based thermosetting resins from rosin acid and soybean oil: the role of rosin acid derivatives. Green Chem 15:1300. https://doi.org/10.1039/c3gc00095h

    Article  CAS  Google Scholar 

  49. Kök MV (2007) Non-isothermal DSC and TG/DTG analysis of the combustion of Si̇lopi̇ asphaltites. J Therm Anal Calorim 88:663–668. https://doi.org/10.1007/s10973-006-8028-x

    Article  Google Scholar 

  50. Kök MV, Gul KG (2013) Combustion characteristics and kinetic analysis of Turkish crude oils and their SARA fractions by DSC. J Therm Anal Calorim 114:269–275. https://doi.org/10.1007/s10973-013-3256-3

    Article  CAS  Google Scholar 

  51. Jany J, Silva S, Nichollas, Guimarães, Jaques et al (2020) Influence of PCL on the epoxy workability, insights from thermal and spectroscopic analyses. Polym Test 89:106679–106679. https://doi.org/10.1016/j.polymertesting.2020.106679

  52. Amanda BV, Henrique P et al (2023) Degradation kinetics of epoxidized soybean oil composites filled with sisal fiber. J Appl Polym Sci. https://doi.org/10.1002/app.54862

    Article  Google Scholar 

  53. Barreto V, Camelo K, Ries A, Maria R (2023) Degradation kinetics of epoxidized soybean oil. J Appl Polym Sci. https://doi.org/10.1002/app.54291

    Article  Google Scholar 

  54. Mashouf Roudsari G, Mohanty AK, Misra M (2014) Study of the Curing Kinetics of Epoxy Resins with biobased hardener and Epoxidized Soybean Oil. ACS Sustain Chem Eng 2:2111–2116. https://doi.org/10.1021/sc500176z

    Article  CAS  Google Scholar 

  55. Kauzmann W, Eyring H (1940) The Viscous Flow of large molecules. J Am Chem Soc 62:3113–3125. https://doi.org/10.1021/ja01868a059

    Article  CAS  Google Scholar 

  56. Eyring H (1936) Viscosity, plasticity, and diffusion as examples of Absolute reaction Rates. J Chem Phys 4:283–291. https://doi.org/10.1063/1.1749836

    Article  CAS  Google Scholar 

  57. Kuo P-Y, de Assis Barros L, Sheen Y-C et al (2016) Thermal degradation of extractive-based bio-epoxy monomer and network: kinetics and mechanism. J Anal Appl Pyrol 117:199–213. https://doi.org/10.1016/j.jaap.2015.11.014

    Article  CAS  Google Scholar 

  58. Liu Y, Li K, Guo J, Xu Z (2018) Impact of the operating conditions on the derived products and the reaction mechanism in vacuum pyrolysis treatment of the organic material in waste integrated circuits. J Clean Prod 197:1488–1497. https://doi.org/10.1016/j.jclepro.2018.05.236

    Article  CAS  Google Scholar 

  59. Mozurkewich M, Benson SW (1984) Negative activation energies and curved Arrhenius plots. 1. Theory of reactions over potential wells. J Phys Chem 88:6429–6435. https://doi.org/10.1021/j150669a073

    Article  CAS  Google Scholar 

  60. Kudus MHA, Zakaria MR, Omar MF et al (2021) Nonisothermal Kinetic Degradation of Hybrid CNT/Alumina Epoxy Nanocomposites. Metals 11:657. https://doi.org/10.3390/met11040657

    Article  CAS  Google Scholar 

  61. Koga N, Vyazovkin S, Burnham AK et al (2023) ICTAC Kinetics Committee recommendations for analysis of thermal decomposition kinetics. Thermochimica Acta 719:179384. https://doi.org/10.1016/j.tca.2022.179384

    Article  CAS  Google Scholar 

  62. Wang S, Lin H, Ru B et al (2016) Kinetic modeling of biomass components pyrolysis using a sequential and coupling method. Fuel 185:763–771. https://doi.org/10.1016/j.fuel.2016.08.037

    Article  CAS  Google Scholar 

  63. Badía JD, Santonja-Blasco L, Moriana R, Ribes-Greus A (2010) Thermal analysis applied to the characterization of degradation in soil of polylactide: II. On the thermal stability and thermal decomposition kinetics. Polym Degrad Stab 95:2192–2199. https://doi.org/10.1016/j.polymdegradstab.2010.06.002

    Article  CAS  Google Scholar 

  64. Phadnis AB, Deshpande VV (1983) Determination of the kinetics and mechanism of a solid state reaction. A simple approach. Thermochimica Acta 62:361–367. https://doi.org/10.1016/0040-6031(83)85056-4

    Article  CAS  Google Scholar 

  65. Yuan X-M, Xie H-J, Nie D-P et al (2023) Thermogravimetric and spectroscopic analyses along with the kinetic modeling of the pyrolysis of phosphate tailings. RSC Adv 13:16741–16748. https://doi.org/10.1039/D3RA01300F

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Han J, Sun Y, Guo W et al (2018) Non-isothermal thermogravimetric analysis of pyrolysis kinetics of four oil shales using Sestak–Berggren method. J Therm Anal Calorim 135:2287–2296. https://doi.org/10.1007/s10973-018-7392-7

    Article  CAS  Google Scholar 

Download references

Funding

The authors would like to acknowledge the financial support from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), from Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação de Apoio à Pesquisa do Estado da Paraíba (FAPESQ) (Concession term: 022/2023, 035/2023), PDCTR-PB (41293.613.31702.02092020). Professor Renate Wellen is CNPq fellow (Number: 303426/2021-7).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: José Barreto, Carlos Luna, Nicole Soares, Matheus Souza, Ana Barros, Amanda Araújo, Elieber BezerraMethodology: José Barreto, Carlos Luna, Nicole Soares, Matheus Souza, Ana Barros, Amanda Araújo, Elieber BezerraSoftware: José Barreto, Nicole Soares, Amanda AraújoValidation: José Barreto, Carlos Luna, Nicole Soares, Matheus Souza, Ana Barros, Amanda Araújo, Elieber Bezerra, Edcleide Araújo, Renate WellenFormal analysis: José Barreto, Carlos Luna, Nicole Soares, Matheus Souza, Ana Barros, Amanda Araújo, Elieber Bezerra, Investigation: José Barreto, Carlos Luna, Nicole Soares, Amanda Araújo, Elieber Bezerra, Resources: Elieber Bezerra, Edcleide Araújo, Renate WellenWriting - Original Draft: José Barreto, Carlos Luna, Nicole Soares, Matheus Souza, Ana Barros, Amanda Araújo, Elieber Bezerra, Edcleide Araújo, Renate WellenWriting - Review & Editing: José Barreto, Elieber Bezerra, Renate WellenVisualization: José Barreto, Carlos Luna, Elieber Bezerra, Edcleide Araújo, Renate WellenSupervision: Elieber Bezerra, Edcleide Araújo, Renate WellenProject administration: Elieber Bezerra, Edcleide Araújo, Renate WellenFunding acquisition: Elieber Bezerra, Edcleide Araújo, Renate Wellen.

Corresponding author

Correspondence to José Barreto.

Ethics declarations

Conflict of interest

There is no conflict of interest and all authors have agreed with this submission and they are aware of the content.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barreto, J., Luna, C., Soares, N. et al. Epoxidation of Residual Soybean Oil and Thermal Characterization of Residual Epoxidized Soybean Oil Crosslinked with Fumaric Acid. J Polym Environ (2024). https://doi.org/10.1007/s10924-024-03457-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10924-024-03457-5

Keywords

Navigation