[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Morphological variability and genetic diversity assessment of agronomic traits in cowpea (Vigna unguiculata (L.) Walp.) core collection using multivariate analysis

  • Research article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

Cowpea is an extensively cultivated multipurpose legume that serves as a significant source of protein and income for smallholder farmers. Characterization and evaluation of cowpea germplasm are essential for future breeding initiatives. In this study, National genebank cowpea core collections (425 accessions), along with 5 checks, were evaluated using an augmented block design across diverse environments for agro-morphological traits. The H' index, derived from trait frequency distributions, revealed high phenotypic diversity (H′ > 60) for all traits except early plant vigour. Six quantitative traits-total leaf length, total leaf width, days to 50% flowering, days to 80% maturity, seeds per pod (SPP), and hundred seed weight (HSW) were analyzed using multivariate techniques. Principal Component Analysis (PCA) and correlation analysis identified positive associations among these yield-related traits, suggesting their utility for indirect selection in breeding programs. PCA highlighted the most diverse accessions; i.e., EC244057, IC276936, IC372722, IC202781, IC278035, IC519570, EC724378, EC723746, EC738089, EC738091, and IC636989. These accessions are recommended as potential parental lines for exploiting heterosis in cowpea breeding. Cluster analysis revealed that genotypes in Cluster VI exhibited the highest HSW, while Cluster I genotypes had the highest SPP. Consequently, Cluster VI genotypes are ideal candidates for high-yielding cultivar development, whereas Cluster III accessions could be valuable for breeding early-maturing cultivars. The identified cowpea germplasm from PCA and cluster analysis are promising resources for breeding programs aimed at enhancing yield and productivity, thereby contributing to improved food and nutrition security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  • Adu MO, Asare PA, Yawson DO, Dzidzienyo DK, Nyadanu D, Asare-Bediako E, Afutu E, Tachie-Menson JW, Amoah MN (2019) Identifying key contributing root system traits to genetic diversity in field-grown cowpea (Vigna unguiculata L. Walp.) genotypes. Field Crops Res 232:106–118

    Article  Google Scholar 

  • Affrifah NS, Phillips RD, Saalia FK (2022) Cowpeas: nutritional profile, processing methods and products—a review. Legum Sci 4(3):e131

    Article  CAS  Google Scholar 

  • Ajayi AT (2022) Screening for drought tolerance in cowpea at the flowering stage. IJSL 4(2):236–268

    Google Scholar 

  • Ajayi AT, Gbadamosi AE (2020). Genetic variability, character association and yield potentials of twenty five accessions of cowpea (Vigna unguiculata L. Walp). J Pure Appl Agric 5(2).

  • Akshaya M, Geetha K, Nirmalakumari A, Sharavanan PT, Sivakumar C, Parasuraman P (2023). Genetic variability, correlation and principal component analysis for yield related traits in pigeonpea [Cajanus cajan (L.) Millsp.]. LR 1: 5.

  • Aleem S, Tahir M, Sharif I, Aleem M, Najeebullah M, Nawaz A, Batool A, Khan MI, Arshad W (2021) Principal component and cluster analyses as a tool in the assessment of genetic diversity for late season cauliflower genotypes. Pakistan J Agri Res 34(1):176–183

    Google Scholar 

  • Ashinie SK, Tesfaye B, Wakeyo GK, Fenta BA (2020). Genetic diversity for immature pod traits in Ethiopian cowpea [Vigna unguiculata (L.) Walp.] landrace collections. Afr J Biotechnol 19(4): 171–182.

  • Avanza M, Acevedo B, Chaves M, Añón M (2013) Nutritional and anti-nutritional components of four cowpea varieties under thermal treatments: principal component analysis. LWT-Food Sci Technol 51(1):148–157

    Article  CAS  Google Scholar 

  • Azam MG, Iqbal MS, Hossain MA, Hossain MF (2020) Stability investigation and genotype× environment association in chickpea genotypes utilizing AMMI and GGE biplot model. Genet Mol Res 19(3):1–15

    Google Scholar 

  • Begna T, Teressa T, Gichile H (2023) Pre-breeding’s role in crop genetic improvement. Int J Res 9(10):1–15

    Google Scholar 

  • Bennett-Lartey SO, Ofori I (1999) Variability studies in some qualitative characters of cowpea (Vigna unguiculata)(L.) Walp) accessions from four cowpea-growing regions of Ghana. Ghana J Agric Sci 32(1):3–10

    Article  Google Scholar 

  • Binacchi F, Rusinamhodzi L, Cadisch G (2022) The potential of conservation agriculture to improve nitrogen fixation in cowpea under the semi-arid conditions of Kenya. Front Agron 4:988090

    Article  Google Scholar 

  • Boukar O, Fatokun CA, Huynh BL, Roberts PA, Close TJ (2016) Genomic tools in cowpea breeding programs: status and perspectives. Front Plant Sci 7:757

    Article  PubMed  PubMed Central  Google Scholar 

  • Bozokalfa MK, Kaygisiz AT, Eşiyok D (2017) Genetic diversity of farmer-preferred cowpea (Vigna unguiculata L. Walp) landraces in Turkey and evaluation of their relationships based on agromorphological traits. Genetika 49(3):935–957

    Article  Google Scholar 

  • Carvalho M, Matos M, Castro I, Monteiro E, Rosa E, Lino-Neto T, Carnide V (2019) Screening of worldwide cowpea collection to drought tolerant at a germination stage. Sci Hortic 247:107–115

    Article  Google Scholar 

  • da Cruz DP, de Amaral Gravina G, Vivas M, Entringer GC, Rocha RS, da Costa Jaeggi MEP, Gravina LM, Pereira IM, do Amaral Junior AT, de Moraes R, de Oliveira TRA (2020) Analysis of the phenotypic adaptability and stability of strains of cowpea through the GGE Biplot approach. Euphytica 216(10):160

    Article  Google Scholar 

  • Digrado A, Gonzalez-Escobar E, Owston N, Page R, Mohammed SB, Umar ML, Boukar O, Ainsworth EA, Carmo-Silva E (2022) Cowpea leaf width correlates with above ground biomass across diverse environments. Legum Sci 4(4):e144

    Article  Google Scholar 

  • Doku EV (1970). Variability in local and exotic varieties of cowpea (Vigna unguiculata (L.) Walp.) in Ghana.

  • Dudhe MY, Mulpuri S, Meena HP, Ajjanavara RR, Kodeboyina VS, Adala VR (2020) Genetic variability, diversity and identification of trait-specific accessions from the conserved sunflower germplasm for exploitation in the breeding programme. Agric Res 9:9–22

    Article  Google Scholar 

  • Enyew M, Feyissa T, Geleta M, Tesfaye K, Hammenhag C, Carlsson AS (2021) Genotype by environment interaction, correlation, AMMI, GGE biplot and cluster analysis for grain yield and other agronomic traits in sorghum (Sorghum bicolor L. Moench). PLoS ONE 16(10):258211

    Article  Google Scholar 

  • Enyiukwu DN, Amadioha A, Ononuju C (2018) Nutritional significance of cowpea leaves for human consumption. Greener Trends Food Sci Nut 1:1–10

    Article  Google Scholar 

  • Eticha F, Bekele E, Belay G, Börner A (2005) Phenotypic diversity in tetraploid wheats collected from Bale and Wello regions of Ethiopia. Plant Genet Resour-C 3(1):35–43

    Article  Google Scholar 

  • Fatokun C, Girma G, Abberton M, Gedil M, Unachukwu N, Oyatomi O, Yusuf M, Rabbi I, Boukar O (2018) Genetic diversity and population structure of a mini-core subset from the world cowpea (Vigna unguiculata (L.) Walp.) germplasm collection. Sci Rep 8(1):16035

    Article  PubMed  PubMed Central  Google Scholar 

  • Federer WT, Raghavarao D (1975) On augmented designs. Biometrics 31:29–35. https://doi.org/10.2307/2529707

    Article  Google Scholar 

  • Gayacharan, Tripathi K, Meena SK, Panwar BS, Lal H, Rana JC, Singh K (2020). Understanding genetic variability in the mungbean (Vigna radiata L.) genepool. Ann Appl Biol, 177(3):346–357.

  • Gerrano AS, Adebola PO, Jansen van Rensburg WS, Laurie SM (2015) Genetic variability in cowpea (Vigna unguiculata (L.) Walp) genotypes. S Afr j Plant Soil 32(3):165–174

    Article  Google Scholar 

  • Gerrano AS, Jansen van Rensburg WS, Kutu FR (2019) Agronomic evaluation and identification of potential cowpea (Vigna unguiculata L. Walp) genotypes in South Africa. Acta Agric Scand Sect B-Soil Plant Sci 69(4):295–303

    CAS  Google Scholar 

  • Huang X, Jang S, Kim B, Piao Z, Redona E, Koh HJ (2021) Evaluating genotype× environment interactions of yield traits and adaptability in rice cultivars grown under temperate, subtropical and tropical environments. Agriculture 11(6):558

    Article  Google Scholar 

  • Jain SK, Diwan D (2021) Principal component and cluster analysis for quantitative traits to identify high yielding genotypes of pearl millet [Pennisetum glaucum (l) R Br]. Forage Res 46(4):308–314

    Google Scholar 

  • Jain SK, Qualset CO, Bhatt GM, Wu KK (1975) Geographical patterns of phenotypic diversity in a world collection of durum wheats 1. Crop Sci 15(5):700–704

    Article  Google Scholar 

  • Jindal Y, Yadav R, Phogat DS (2018) Principal component analysis and determination of the selection criteria in fodder cowpea (Vigna unguiculata (L.) Walp) genotypes. Range Manag Agrofor 39(2):191–196

    Google Scholar 

  • Kelly AM, Smith AB, Eccleston JA, Cullis BR (2007) The accuracy of varietal selection using factor analytic models for multi-environment plant breeding trials. Crop Sci 47(3):1063–1070

    Article  Google Scholar 

  • Khady D, Nadiala CY, Roger DBI, Raymond KY, Lassana T, Kevin KK (2024). Morphological traits variation of cowpea (Vigna unguiculata L. Walp) grown in Côte d’Ivoire.

  • Khoury CK, Brush S, Costich DE, Curry HA, De Haan S, Engels JM, Guarino L, Hoban S, Mercer KL, Miller AJ, Nabhan GP (2022) Crop genetic erosion: understanding and responding to loss of crop diversity. New Phytol 33(1):84–118

    Article  Google Scholar 

  • Kumar MN, Ramya V, Kumar CS, Raju T, Kumar NS, Seshu G, Sathish G, Bhadru D, Ramana MV (2021) Identification of pigeonpea genotypes with wider adaptability to rainfed environments through AMMI and GGE biplot analyses. Indian J Genet PL BR 81(01):63–73

    Article  Google Scholar 

  • Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18

    Article  Google Scholar 

  • Lo S, Muñoz-Amatriaín M, Boukar O, Herniter I, Cisse N, Guo YN, Roberts PA, Xu S, Fatokun C, Close TJ (2018) Identification of QTL controlling domestication-related traits in cowpea (Vigna unguiculata L. Walp). Sci Rep 8(1):6261

    Article  PubMed  PubMed Central  Google Scholar 

  • Mekonnen TW, Mekbib F, Amsalu B, Gedil M, Labuschagne M (2022) Implications of qualitative trait diversity for future cowpea improvement and genetic resource conservation. S Afr J Bot 151:763–773

    Article  Google Scholar 

  • Mofokeng MA, Mashilo J, Rantso P, Shimelis H (2020) Genetic variation and genetic advance in cowpea based on yield and yield-related traits. Acta Agric Scand–b Soil Plant 70(5):381–391

    CAS  Google Scholar 

  • Namatsheve T, Cardinael R, Corbeels M, Chikowo R (2020) Productivity and biological N2-fixation in cereal-cowpea intercropping systems in sub-Saharan Africa. A Review ASD 40(4):30

    CAS  Google Scholar 

  • Ngompe-Deffo T, Kouam EB, Beyegue-Djonko H, Anoumaa M (2017) Evaluation of the genetic variation of cowpea landraces (Vigna unguiculata) from Western Cameroon using qualitative traits. Not Sci Biol 9(4):508–514

    Article  Google Scholar 

  • Nkhoma N, Shimelis H, Laing MD, Shayanowako A, Mathew I (2020) Assessing the genetic diversity of cowpea [Vigna unguiculata (L.) Walp.] germplasm collections using phenotypic traits and SNP markers. BMC Genet 21:1–16

    Article  Google Scholar 

  • Olivoto T, Lúcio ADC (2020) metan: an R package for multi-environment trial analysis. Methods Ecol Evol 11(6):783–789

    Article  Google Scholar 

  • Owusu EY, Karikari B, Kusi F, Haruna M, Amoah RA, Attamah P, Adazebra G, Sie EK, Issahaku M (2021). Genetic variability, heritability and correlation analysis among maturity and yield traits in Cowpea (Vigna unguiculata (L) Walp) in Northern Ghana. Heliyon 7(9).

  • Patel UV, Parmar VK, Patel PB, Malviya AV (2016) Correlation and path analysis study in cowpea (Vigna unguiculata (L.) WALP). Int J Sci Environ Technol 5(6):3–897

    Google Scholar 

  • Rachie KO, Rawal KM (1976) Integrated approaches to improving cowpeas, Vigna unguiculata (L.) Walp. Technical bulletin. Int Inst Trop Agric 5:36

    Google Scholar 

  • Rana C, Sharma A, Sharma KC, Mittal P, Sinha BN, Sharma VK, Chandel A, Thakur H, Kaila V, Sharma P, Rana V (2021) Stability analysis of garden pea (Pisum sativum L.) genotypes under North Western Himalayas using joint regression analysis and GGE biplots. Genet Resour Crop Evol 68:999–1010

    Article  Google Scholar 

  • Salem N, Hussein S (2019) Data dimensional reduction and principal components analysis. Procedia Comput Sci 163:292–299

    Article  Google Scholar 

  • Saxena A, Rukam TS (2020). Assessment of genetic diversity in cowpea (Vigna unguiculata L. Walp.) through ISSR marker. Res J Biotechnol Vol 15(3).

  • Sharifi P, Astereki H, Pouresmael M (2018) Evaluation of variations in chickpea (Cicer arietinum L.) yield and yield components by multivariate technique. Ann Agrar Sci 16(2):136–142

    Article  Google Scholar 

  • da Silva AR (2017). Tools for biometry and applied statistics in agricultural science. The comprehensive R archive network. Website https://CRAN.R-project.org/package=psych.

  • Singh K, Gupta K, Tyagi V, Rajkumar S (2020) Plant genetic resources in India: management and utilization. Vavilovskij ž Genet Sel 24(3):306

    CAS  Google Scholar 

  • Singh SR, Rajan S, Kumar D, Soni VK (2024) Genetic diversity assessment in dolichos bean (Lablab purpureus L.) based on principal component analysis and single linkage cluster analysis. LEGUME RES 47(5):731

    Google Scholar 

  • Smith JSC, Smith OS (1989). The description and assessment of distances between inbred lines of maize: II. The utility of morphological, biochemical, and genetic descriptors and a scheme for testing of distinctiveness between inbred lines.

  • Tatineni V, Cantrell RG, Davis DD (1996) Genetic diversity in elite cotton germplasm determined by morphological characteristics and RAPDs. Crop Sci 36(1):186–192

    Article  Google Scholar 

  • Thormann I, Engels JM (2015). Genetic diversity and erosion—a global perspective. Genet Divers Eros Plants: Indic Prev 263–294.

  • Uhlarik A, Ćeran M, Živanov D, Grumeza R, Skøt L, Sizer-Coverdale E, Lloyd D (2022) Phenotypic and genotypic characterization and correlation analysis of pea (Pisum sativum L.) diversity panel. Plants 11(10):1321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vavilapalli S, Celine VA, Duggi S, Padakipatil S, Magadum S (2013). Genetic variability and heritability studies in bush cowpea (Vigna unguiculata (L.) Walp.). LGG, 4(4).

  • Vijayakumar E, Thangaraj K, Kalaimagal T, Vanniarajan C, Senthil N, Jeyakumar P (2020) Multivariate analysis of 102 Indian cowpea (Vigna unguiculata (L.) Walp.) germplasm. Electron J Plant Breed 11(1):176–183

    Google Scholar 

  • Walle T, Mekbib F, Amsalu B, Gedil M (2019) Genetic diversity of Ethiopian cowpea [Vigna unguiculata (L.) Walp] genotypes using multivariate analyses. Ethiop J Agric Sci 29(3):89–104

    Google Scholar 

Download references

Acknowledgements

The authors thank ICAR, NBPGR and DBT, GoI for funding the research Network on ‘Characterization, Evaluation, Genetic Enhancement and Generation of Genomic Resources for Accelerated Utilization and Improvement of Minor Pulses’.

Funding

This work was funded by Department of Biotechnology, Ministry of Science and Technology, India, BT/Ag/Network/Pulses-1/2017–18.

Author information

Authors and Affiliations

Authors

Contributions

KT and DPW conceived the project and designed the experiments; DC and PG analyzed data and wrote the original draft; KT, DKP, AMR, and SBC collected phenotyping data; RKG and GPS reviewed and edited the manuscript; KT and PG reviewed and finalized the manuscript. All authors reviewed and approved the manuscript.

Corresponding author

Correspondence to Kuldeep Tripathi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 55 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaudhary, D., Gore, P.G., Wankhede, D.P. et al. Morphological variability and genetic diversity assessment of agronomic traits in cowpea (Vigna unguiculata (L.) Walp.) core collection using multivariate analysis. Genet Resour Crop Evol (2025). https://doi.org/10.1007/s10722-024-02299-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10722-024-02299-3

Keywords

Navigation