[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Energy Balance and Damage for Dynamic Fast Crack Growth from a Nonlocal Formulation

  • Research
  • Published:
Journal of Elasticity Aims and scope Submit manuscript

Abstract

A nonlocal model for dynamic brittle damage is introduced consisting of two phases, one elastic and the other inelastic. Evolution from the elastic to the inelastic phase depends on material strength. Existence and uniqueness of the displacement-failure set pair follow from an initial value problem describing the evolution. The displacement-failure pair satisfies energy balance. The length of nonlocality \(\epsilon \) is taken to be small relative to the domain in \(\mathbb{R}^{d}\), \(d=2,3\). The strain is formulated as a difference quotient of the displacement in the nonlocal model. The two point force is expressed in terms of a weighted difference quotient and delivers an evolution on a subset of \(\mathbb{R}^{d}\times \mathbb{R}^{d}\). This evolution provides an energy balance between external energy, elastic energy, and damage energy including fracture energy. For any prescribed loading the deformation energy resulting in material failure over a region \(R\) is uniformly bounded as \(\epsilon \rightarrow 0\). For fixed \(\epsilon \), the failure energy is discovered to be is nonzero for \(d-1\) dimensional regions \(R\) associated with flat crack surfaces. Calculation shows, this failure energy is the Griffith fracture energy given by the energy release rate multiplied by area for \(d=3\) (or length for \(d=2\)). The nonlocal field theory is shown to recover a solution of Naiver’s equation outside a propagating flat traction free crack in the limit of vanishing spatial nonlocality. The theory and simulations presented here corroborate the recent experimental findings of (Rozen-Levy et al. in Phys. Rev. Lett. 125(17):175501, 2020) that cracks follow the location of maximum energy dissipation inside the intact material. Simulations show fracture evolution through the generation of a traction free internal boundary seen as a wake left behind a moving strain concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Ambrosio, L., Tortorelli, V.: On the approximation of free discontinuity problems. Boll. Unione Mat. Ital., B 6, 105–123 (1992)

    MathSciNet  Google Scholar 

  2. Bazilevs, Y., Behzadinasab, M., Foster, J.: Simulating concrete failure using the microplane (M7) constitutive model in correspondence-based peridynamics: validation for classical fracture tests and extension to discrete fracture. J. Mech. Phys. Solids 166, 104947 (2022)

    Article  MathSciNet  Google Scholar 

  3. Bhattacharya, K., Dayal, K.: Kinetics of phase transformation in the peridynamic formulation of continuum mechanics. J. Mech. Phys. Solids 54, 1811–1842 (2006)

    Article  MathSciNet  Google Scholar 

  4. Bhattacharya, D., Lipton, R.P.: Quasistatic evolution with unstable forces. Multiscale Model. Simul. 21(2), 598–623 (2023)

    Article  MathSciNet  Google Scholar 

  5. Bhattacharya, D., Lipton, R., Diehl, P.: Quasistatic fracture evolution using a nonlocal cohesive model. Int. J. Fract. (2023). https://doi.org/10.1007/s10704-023-00711-0

    Article  Google Scholar 

  6. Bobaru, F., Zhang, G.: Why do cracks branch? A peridynamic investigation of dynamic brittle fracture. Int. J. Fract. 196, 59–98 (2015)

    Article  Google Scholar 

  7. Bobaru, F., Foster, J.T., Geubelle, P.H., Silling, S.A.: Handbook of Peridynamic Modeling. CRC press, Boca Raton (2016)

    Book  Google Scholar 

  8. Bourdin, B., Francfort, G., Marigo, J.-J.: The variational approach to fracture. J. Elast. 91(1–3), 1–148 (2008)

    MathSciNet  Google Scholar 

  9. Dal Maso, G., Toader, R.: On the Cauchy problem for the wave equation on time dependent domains. J. Differ. Equ. 266, 3209–3246 (2019)

    Article  MathSciNet  Google Scholar 

  10. Diehl, P., Lipton, R., Schweitzer, M.A.: A numerical verification of a bond-based softening peridynamic model for small displacements: Deducing material parameters from classical linear theory. Institute for Numerical Simulation, Universität Bonn preprint series, volume I.N.S. preprint 1630 (2016)

  11. Diehl, P., Lipton, R., Wick, T., Tyagi, M.: A comparative review of peridynamics and phase-field models for engineering fracture mechanics. Comput. Mech. 69, 1–35 (2022)

    Article  MathSciNet  Google Scholar 

  12. Du, Q., Gunzburger, M., Lehoucq, R., Zhou, K.: Analysis of the volume-constrained peridynamic Navier equation of linear elasticity. J. Elast. 113, 193–217 (2013)

    Article  MathSciNet  Google Scholar 

  13. Du, Q., Tao, Y., Tian, X.: A peridynamic model of fracture mechanics with bond-breaking. J. Elast. (2015)

  14. Emmrich, E., Phust, D.: A short note on modeling damage in peridynamics. J. Elast. (2015)

  15. Falk, M., Needleman, A., Rice, J.: A critical evaluation of cohesive zone models of dynamic fracture. J. Phys. IV 11, Pr5-43–Pr5-50 (2001)

    Google Scholar 

  16. Federer, H.: Geometric Measure Theory. Springer, Berlin (1969)

    Google Scholar 

  17. Foster, J., Silling, S., Chen, W.: An energy based failure criterion for use with peridynamic states. Int. J. Fract. 9, 679–688 (2011)

    Google Scholar 

  18. Ha, Y.D., Bobaru, F.: Studies of dynamic crack propagation and crack branching with peridynamics. Int. J. Fract. 162, 229–244 (2010)

    Article  Google Scholar 

  19. Hu, Y., Madenci, E.: Bond-based peridynamic modeling of composite laminates with arbitrary fiber orientation and stacking sequence. Compos. Struct. 153, 139–175 (2016)

    Article  Google Scholar 

  20. Hu, Y., Chen, H., Spencer, B.W., Madenci, E.: Thermomechanical peridynamic analysis with irregular non-uniform domain discretization. Eng. Fract. Mech. 197, 92–113 (2018)

    Article  Google Scholar 

  21. Isiet, M., Mišković, I., Mišković, S.: Review of peridynamic modelling of material failure and damage due to impact. Int. J. Impact Eng. 147, 103740 (2021)

    Article  Google Scholar 

  22. Jafarzadeh, S., Mousavi, F., Larios, A., Bobaru, F.: A general and fast convolution-based method for peridynamics: applications to elasticity and brittle fracture. Comput. Methods Appl. Mech. Eng. 392, 114666 (2022)

    Article  MathSciNet  Google Scholar 

  23. Javili, A., Morasata, R., Oterkus, E., Oterkus, S.: Peridynamics review. Math. Mech. Solids 24(11), 3714–3739 (2019)

    Article  MathSciNet  Google Scholar 

  24. Jha, P.K., Lipton, R.: Numerical convergence of nonlinear nonlocal continuum models to local elastodynamic. Int. J. Numer. Methods Eng. 114, 1389–1410 (2018)

    Article  MathSciNet  Google Scholar 

  25. Jha, P.K., Lipton, R.: Kinetic relations and local energy balance for LEFM from a nonlocal peridynamic model. Int. J. Fract. 226(1), 81–95 (2020)

    Article  Google Scholar 

  26. Lipton, R.: Dynamic brittle fracture as a small horizon limit of peridynamics. J. Elast. 117(1), 21–50 (2014)

    Article  MathSciNet  Google Scholar 

  27. Lipton, R.: Cohesive dynamics and brittle fracture. J. Elast. 124(2), 143–191 (2016)

    Article  MathSciNet  Google Scholar 

  28. Lipton, R.P., Jha, P.K.: Nonlocal elastodynamics and fracture. Nonlinear Differ. Equ. Appl. (2021)

  29. Lipton, R., Said, E., Jha, P.: Free damage propagation with memory. J. Elast. 133(2), 129–153 (2018)

    Article  MathSciNet  Google Scholar 

  30. Lipton, R.P., Lehoucq, R.B., Jha, P.K.: Complex fracture nucleation and evolution with nonlocal elastodynamics. J. Peridyn. Nonlocal Model. 1(2), 122–130 (2019)

    Article  MathSciNet  Google Scholar 

  31. Madenchi, E., Oterkus: Peridynamic theory. In: IPerydynamic Theory and Its Applications, pp. 19–43. Springer, New York (2013)

    Google Scholar 

  32. Máirtin, E.O., Parry, G., Beltz, G.E., McGarrey, J.P.: Potential-based and non-potential-based cohesive zone formulations under mixed-mode separation and over-closure—part ii: finite element applications. J. Mech. Phys. Solids 63, 363–385 (2014)

    Article  Google Scholar 

  33. Morgan, F.: Geometric Measure Theory, a Beginners Guide. Springer, Berlin (1995)

    Google Scholar 

  34. Ortiz, M., Pandolfi, A.: Finite-deformation irreversible cohesive element for three-dimensional crack-propagation analysis. Int. J. Numer. Methods Eng. 44, 1267–1282 (1999)

    Article  Google Scholar 

  35. Ravi-Chandar, K., Knauss, W.G.: An experimental investigation into dynamic fracture: III. On steady-state crack propagation and crack branchin. Int. J. Fract. 26, 141–154 (1984)

    Article  Google Scholar 

  36. Rozen-Levy, L., Kolinski, J.M., Cohen, G., Fineberg, J.: How fast cracks in brittle solids choose their path. Phys. Rev. Lett. 125(17), 175501 (2020)

    Article  Google Scholar 

  37. Seleson, P., Littlewood, D.: Convergence studies in meshfree peridynamic simulations. Comput. Math. Appl. 71, 2432–2448 (2018)

    Article  MathSciNet  Google Scholar 

  38. Sheikhbahaei, P., Mossaiby, F., Shojaei, A.: An efficient peridynamic framework based on the arc-length method for fracture modeling of brittle and quasi-brittle problems with snapping instabilities. Comput. Math. Appl. 136, 165–190 (2023)

    Article  MathSciNet  Google Scholar 

  39. Silling, S.A.: Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 48(1), 175–209 (2000)

    Article  MathSciNet  Google Scholar 

  40. Silling, S., Ascari, E.: A mesh free method based on the peridynamic model of solid mechanics. Comput. Struct. 83, 1526–1536 (2005)

    Article  Google Scholar 

  41. Silling, S.A., Epton, M., Weckner, O., Xu, J., Askari, E.: Peridynamic states and constitutive modeling. J. Elast. 88(2), 151–184 (2007)

    Article  MathSciNet  Google Scholar 

  42. Xu, X.-P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42, 1397–1434 (1984)

    Article  Google Scholar 

  43. Xu, Z., Zhang, G., Chen, Z., Bobaru, F.: Elastic vortices and thermally-driven cracks in brittle materials with peridynamics. Int. J. Fract. 209, 203–222 (2018)

    Article  Google Scholar 

  44. Zaccariotto, M., Luongo, F., Galvanetto, U.: Examples of applications of the peridynamic theory to the solution of static equilibrium problems. Aeronaut. J. 119, 677–700 (2015)

    Article  Google Scholar 

  45. Zaccaritto, M., Luongo, F., Sargeo, G., Galvanetto, U.: Examples of applications of the peridynamic theory to the solution of static equilibrium problems. Aeronaut. J. 119, 677–700 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U. S. Army Research Laboratory and the U. S. Army Research Office under Contract/Grant Number W911NF-19-1-0245 and W911NF-24-2-0184. Portions of this research were conducted with high performance computing resources provided by Louisiana State University (http://www.hpc.lsu.edu).

Author information

Authors and Affiliations

Authors

Contributions

R.L and D.B. wrote and reviewed the manuscript.

Corresponding author

Correspondence to Robert P. Lipton.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lipton, R.P., Bhattacharya, D. Energy Balance and Damage for Dynamic Fast Crack Growth from a Nonlocal Formulation. J Elast 157, 5 (2025). https://doi.org/10.1007/s10659-024-10098-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10659-024-10098-1

Keywords

Mathematics Subject Classification

Navigation