[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On repeated-root multivariable codes over a finite chain ring

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

Abstract

In this work we consider repeated-root multivariable codes over a finite chain ring. We show conditions for these codes to be principally generated. We consider a suitable set of generators of the code and compute its minimum distance. As an application we study the relevant example of the generalized Kerdock code in its r-dimensional cyclic version.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bini G and Flamini F (2002). Finite commutative rings and their applications. The Kluwer International Series in Engineering and Computer Science, 680. Kluwer Academic Publishers, Boston, MA

    Google Scholar 

  2. Cazaran J and Kelarev AV (1997). Generators and weights of polynomial codes. Arch Math 69: 479–486

    Article  MATH  MathSciNet  Google Scholar 

  3. Cazaran J and Kelarev AV (1999). On finite principal ideal rings. Acta Math Univ Comenianae LXVIII: 77–84

    MathSciNet  Google Scholar 

  4. Cox D, Little J and O’Shea D (1992). Ideals, varieties, and algorithms. Undergraduate Texts in Mathematics. Springer-Verlag, New York, Inc.

    Google Scholar 

  5. Dinh HQ and López-Permouth SR (2004). Cyclic and negacyclic codes over finite chain rings. IEEE Trans Inform Theory 50(8): 1728–1744

    Article  MathSciNet  Google Scholar 

  6. Hammons AR Jr, Kumar PV, Calderbank AR, Sloane NJA and Sole P (1994). The Z 4-linearity of Kerdock, Preparata, Goethals and related codes. IEEE Trans. Inform. Theory 40: 301–319

    Article  MATH  MathSciNet  Google Scholar 

  7. Kerdock AM (1972). A class of low-rate non-linear binary codes. Inform Control 20: 182–187

    Article  MathSciNet  MATH  Google Scholar 

  8. Kurakin VL, Kuzmin AS, Markov VT, Mikhalev AV, Nechaev AA (1999) Linear codes and polylinear recurrences over finite rings and modules (a survey). In Applied algebra, algebraic algorithms and error-correcting codes (Honolulu, HI, 1999), vol 1719 of Lecture Notes in Comput Sci, pp 365–391. Springer, Berlin

  9. Kuzmin AS, Nechaev AA (1994) Linearly presented codes and Kerdock code over an arbitrary Galois field of the characteristic 2. Russian Math Surveys 49(5)

  10. Lu P, Liu M and Oberst U (2004). Linear recurring arrays, linear systems and multidimensional cyclic codes over quasi-Frobenius rings. Acta Appl Math 80(2): 175–198

    Article  MATH  MathSciNet  Google Scholar 

  11. Martínez-Moro E and Rúa IF (2006). Multivariable codes over finite chain rings: serial codes. SIAM on Discrete Mathematics 20(4): 947–959

    Article  MATH  Google Scholar 

  12. McDonald BR (1974). Finite rings with identity. Marcel Dekker Inc, New York

    MATH  Google Scholar 

  13. Nechaev AA (1989). Kerdock’s code in a cyclic form. Diskret Mat 1: 123–139

    MATH  MathSciNet  Google Scholar 

  14. Nechaev AA, Kuzmin AS (1997) Formal duality of linearly presentable codes over a Galois field. In Applied algebra, algebraic algorithms and error-correcting codes (Toulouse, 1997), vol 1255 of Lecture Notes in Comput Sci, pp 263–276. Springer, Berlin

  15. Nechaev AA and Mikhailov DA (2001). Canonical system of generators of a unitary polynomial ideal over a commutative Artinian chain ring. Discrete Math Appl 11(6): 545–586

    Article  MATH  MathSciNet  Google Scholar 

  16. Puninski G (2001). Serial rings. Kluwer Academic Publishers, Dordrecht

    MATH  Google Scholar 

  17. Sălăgean A (2006). Repeated-root cyclic and negacyclic codes over a finite chain ring. Discrete Appl Math 154: 413–419

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Martínez-Moro.

Additional information

Communicated by: D. Jungnickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martínez-Moro, E., Rúa, I.F. On repeated-root multivariable codes over a finite chain ring. Des. Codes Cryptogr. 45, 219–227 (2007). https://doi.org/10.1007/s10623-007-9114-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-007-9114-1

Keywords

AMS Classification

Navigation