[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Intuitionistic general fuzzy automata

  • Foundations
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

In this paper, by considering the notions of general fuzzy automata, admissible relation, admissible partition and intuitionistic fuzzy set based on the Atanassov (Fuzzy Sets Syst 20(1):87–96, 1986), we define the concepts intuitionistic general fuzzy automaton (IGFA), max–min intuitionistic general fuzzy automaton, admissible relation for the IGFA, admissible partition for the IGFA, quotient IGFA and language for an IGFA. In particular, a connection between the admissible partition and the quotient IGFA is presented and it is shown that any quotient of a given IGFA and the IGFA itself has the same language. Also, using the above notions, some related theorems are proved and, finally, some examples are given to clarify these new notions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Atanassov K (1986) Intuitionistic fuzzy sets. Fuzzy Sets Syst 20(1):87–96

    Article  MathSciNet  MATH  Google Scholar 

  • Atanassov K (2005) Answer to D. Dubois, S. Gottwald, P. Hajek, J. Kacprzyk and H. PradeâĂŹs paper terminological difficulties in fuzzy set theory-the case of intuitionistic fuzzy sets. Fuzzy Sets Syst 156:496–499

  • Burillo P, Bustince H (1996) Vague sets are intuitionistic fuzzy sets. Fuzzy Sets Syst 79:403–405

  • Cattaneo C, Flocchini P, Mauri G, Vogliotti C, Santoro N (1997) Cellular automata in fuzzy backgrounds. Phys D 105:105–120

    Article  MathSciNet  MATH  Google Scholar 

  • Coskun E (2000) Systems on intuitionistic fuzzy special sets and intuitionistic fuzzy special measures. Inf Sci 128:105–118

    Article  MathSciNet  MATH  Google Scholar 

  • Davvaz B, Dudek W, Jun Y (2006) Intuitionistic fuzzy hv-submodules. Inf Sci 176:285–300

    Article  MathSciNet  MATH  Google Scholar 

  • Deschrijver G, Kerre E (2007) On the position of intuitionistic fuzzy set theory in the framework of theories modelling imprecision. Inf Sci 177:1860–1866

  • Doostfatemeh M, Kremer S (2003) A fuzzy finite-state automaton that unifies a number of other popular computational paradigms. ASME Press, New York

    Google Scholar 

  • Doostfatemeh M, Kremer SC (2005) New directions in fuzzy automata. Int J Approx Reason 38:175–214

    Article  MathSciNet  MATH  Google Scholar 

  • Dubois D, Gottwald S, Hajek P, Kacprzyk J, Prade H (2005) Terminological difficulties in fuzzy set theory-the case of intuitionistic fuzzy sets. Fuzzy Sets Syst 156:485–491

    Article  MathSciNet  MATH  Google Scholar 

  • Dudek W, Davvaz B, Jun Y (2005) On intuitionistic fuzzy sub-hyperquasigroups of hyperquasigroups. Inf Sci 170:251–262

    Article  MathSciNet  MATH  Google Scholar 

  • Gau W, Buehrer D (1993) Vague sets. IEEE Trans Syst Man Cybern 23:610–614

    Article  MATH  Google Scholar 

  • Hung W, Wu J (2002) Correlation of intuitionistic fuzzy sets by centroid method. Inf Sci 144:219–225

    Article  MathSciNet  MATH  Google Scholar 

  • Jun Y (2005) Intuitionistic fuzzy finite state machines. J Appl Math Comput 17(1–2):109–120

    Article  MathSciNet  MATH  Google Scholar 

  • Jun Y (2007) Quotient structures of intuitionistic fuzzy finite state machines. Inf Sci 177:4977–4986

    Article  MathSciNet  MATH  Google Scholar 

  • Jun Y, Ozturk M, Park C (2007) Intuitionistic nil radicals of intuitionistic fuzzy ideals and euclidean intuitionistic fuzzy ideals in rings. Inf Sci 177:4662–4677

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Pedrycz W (2005) Fuzzy finite automata and fuzzy regular expressions with membership values in lattice-ordered monoid. Fuzzy Sets Syst 156:68–92

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Shi Z (2000) Remarks on uninorm aggregation operators. Fuzzy Sets Syst 114:377–380

    Article  MathSciNet  MATH  Google Scholar 

  • Lupianez F (2006) Nets and filters in intuitionistic fuzzy topological spaces. Inf Sci 176:2396–2404

    Article  MathSciNet  MATH  Google Scholar 

  • Malik DS, Mordeson JN (2002) Fuzzy automata and languages. Theory and applications. Chapman Hall, CRC, Boca Raton

    MATH  Google Scholar 

  • Nguyen H, Walker E (2006) A First course in fuzzy logic. Departement of mathematical Sciences, Chapman Hall, CRC, Boca Raton

    MATH  Google Scholar 

  • Pedrycz W, Gacek A (2001) Learning of fuzzy automata. Int J Comput Intell Appl 1(1):19–33

    Article  Google Scholar 

  • Reiter C (2002) Fuzzy automata and life. Complexity 7(3):19–29

    Article  MathSciNet  Google Scholar 

  • Santos ES (1968) Maximin automata. Inf Control 13(4):363–377

    Article  MathSciNet  MATH  Google Scholar 

  • Srivastava A, Tiwari S (2002) A topology for fuzzy automata. In: Pal NR, Sugeno M (eds) 2002 AFSS international conference on fuzzy systems. Lecture notes in artificial intellegence, Springer-Verlag, Berlin, pp 485–491

  • Ting-Yu C, Cing-Chan C, Che-Wei T (2008) Conceptualizing product involvement using fuzzy automata and intuitionistic fuzzy sets. IEEE international conference on fuzzy systems. Hong Kong, China, pp 805–811

  • Uma A, Rajasekar M (2014) Intuitionistic fuzzy automata and the minimal machine. Eng Math Lett 15:1–11

    Google Scholar 

  • Wee W (1967) On generalization of adaptive algorithm and application of the fuzzy sets concept to pattern classification. PhD thesis, Purdue University, Lafayette

  • Ying M (2002) A formal model of computing with words. IEEE Trans Fuzzy Syst 10(5):640–652

    Article  Google Scholar 

  • Zadeh L (1965) Fuzzy sets. Inf Control 8:338–353

    Article  MathSciNet  MATH  Google Scholar 

  • Zahedi MM, Horry M, Abolpor K (2008) Bifuzzy (general) topology on max–min general fuzzy automata. Adv Fuzzy Math 3(1):51–68

    Google Scholar 

  • Zhang X, Li Y (2009) Intuitionistic fuzzy recognizers and intuitionistic fuzzy finite automata. Soft Comput 13:611–616

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the Center of Excellence of Algebraic Hyper structures and its Applications of Tarbiat Modares University (CEAHA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shamsizadeh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by A. Di Nola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shamsizadeh, M., Zahedi, M.M. Intuitionistic general fuzzy automata. Soft Comput 20, 3505–3519 (2016). https://doi.org/10.1007/s00500-015-1969-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00500-015-1969-x

Keywords

Navigation