[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo

  • Original Article – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Photodynamic therapy (PDT) is a promising noninvasive treatment, which has been approved by the US Food and Drug Administration for the treatment of localized tumors. With the aim to select an appropriate photosensitizer for tumor treatment in PDT, the antitumor effect of a novel chlorin-based photosensitizer, meso-tetra (3-morphlinomethyl-4-methoxyphenyl) chlorin (TMMC) (Fig. 1a) on two types of human malignant tumor cells in vitro and a esophageal cancer model in nude mice, was evaluated in the present paper.

Chemical structure and spectrum properties of TMMC in DMF. a Chemical structure of TMMC in DMF. b UV–Vis absorption spectrum of TMMC in DMF. Its maximum absorbance is at 423 nm, and at 527, 555, 600, 655 nm and 712 nm, also it has absorption. c Emission spectrum of TMMC, which was excited at 514 nm, and its peaks were at 656 and 720 nm. d The matrix of excitation and emission spectra (Ex: 300–550 nm, Em: 600–780 nm)

Methods

The efficiency of TMMC–PDT in vitro was analyzed by MTT assay and clonogenic assay. The intracellular distribution of photosensitizers was detected with laser scanning confocal microscopy. The accumulation of TMMC in human malignant tumor cells was measured by Fluorescence Spectrometer, and the pathway of cell death was analyzed by flow cytometry. Eca-109 tumor model was used to evaluate the antitumor effects of TMMC-mediated PDT. And the singlet oxygen quantum yield of TMMC was also measured using DPBF as substrate.

Results

TMMC shows a singlet oxygen quantum yield of 0.59 and displays a characteristic long wavelength absorption peak at 655 nm. The accumulation of TMMC increased in time-dependent manner, and it was found in cytoplasm and nuclear membranes. TMMC–PDT induced cell death by the major death pathway of necrosis and significantly reduced the growth of Eca-109 tumors in nude mice (180 mW/cm2, 120 J/cm2).

Conclusion

The studies suggest that TMMC is an effective photosensitizer for PDT to tumors. Therefore, TMMC has great potentials for tumor treatment in PDT and deserves further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashen-Garry D, Selke M (2013) Singlet oxygen generation by cyclometalated complexes and applications. Photochem Photobiol. doi:10.1111/php.12211

    PubMed  Google Scholar 

  • Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776(1):86–107. doi:10.1016/j.bbcan.2007.07.001

    CAS  PubMed  Google Scholar 

  • Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110(5):2795–2838. doi:10.1021/cr900300p

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng Y, C. Samia A, Meyers JD, Panagopoulos I, Fei B, Burda C (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 130(32):10643–10647. doi:10.1021/ja801631c

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chin W, Lau W, Cheng C, Olivo M (2004) Evaluation of Hypocrellin B in a human bladder tumor model in experimental photodynamic therapy: biodistribution, light dose and drug-light interval effects. Int J Oncol 25(3):623–629

    CAS  PubMed  Google Scholar 

  • Dewaele M, Verfaillie T, Martinet W, Agostinis P (2010) Death and survival signals in photodynamic therapy. Methods Mol Biol 635:7–33. doi:10.1007/978-1-60761-697-9_2

    Article  CAS  PubMed  Google Scholar 

  • Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3(5):380–387. doi:10.1038/nrc1071

    Article  CAS  PubMed  Google Scholar 

  • Dougherty TJ, Gomer CJ, Henderson BW, Jori G, Kessel D, Korbelik M, Moan J, Peng Q (1998) Photodynamic therapy. J Natl Cancer Inst 90(12):889–905

    Article  CAS  PubMed  Google Scholar 

  • Fien SM, Oseroff AR (2007) Photodynamic therapy for non-melanoma skin cancer. J Natl Compr Canc Netw 5(5):531–540

    CAS  PubMed  Google Scholar 

  • Gerlier D, Thomasset N (1986) Use of MTT colorimetric assay to measure cell activation. J Immunol Methods 94(1–2):57–63

    Article  CAS  PubMed  Google Scholar 

  • Hamblin MR, Miller JL, Rizvi I, Ortel B, Maytin EV, Hasan T (2001) Pegylation of a chlorin(e6) polymer conjugate increases tumor targeting of photosensitizer. Cancer Res 61(19):7155–7162

    CAS  PubMed  Google Scholar 

  • Hopper C (2000) Photodynamic therapy: a clinical reality in the treatment of cancer. Lancet Oncol 1:212–219

    Article  CAS  PubMed  Google Scholar 

  • Howard JA (1976) The new wilderness. The Journal of the American College of Dentists 43 (1):15–22, 32

  • Huang Z (2005) A review of progress in clinical photodynamic therapy. Technol Cancer Res Treat 4(3):283–293

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6(5):513–519. doi:10.1038/74994

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86(1):147–157

    Article  CAS  PubMed  Google Scholar 

  • Lovell JF, Liu TW, Chen J, Zheng G (2010) Activatable photosensitizers for imaging and therapy. Chem Rev 110(5):2839–2857. doi:10.1021/cr900236h

    Article  CAS  PubMed  Google Scholar 

  • Ochsner M (1997) Photophysical and photobiological processes in the photodynamic therapy of tumours. J Photochem Photobiol, B 39(1):1–18

    Article  CAS  Google Scholar 

  • Redmond RW, Gamlin JN (1999) A compilation of singlet oxygen yields from biologically relevant molecules. Photochem Photobiol 70(4):391–475

    Article  CAS  PubMed  Google Scholar 

  • Reiners JJ Jr, Agostinis P, Berg K, Oleinick NL, Kessel D (2010) Assessing autophagy in the context of photodynamic therapy. Autophagy 6(1):7–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rello-Varona S, Stockert JC, Canete M, Acedo P, Villanueva A (2008) Mitotic catastrophe induced in HeLa cells by photodynamic treatment with Zn(II)-phthalocyanine. Int J Oncol 32(6):1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Senge MO, Brandt JC (2011) Temoporfin (Foscan(R), 5,10,15,20-tetra(m-hydroxyphenyl)chlorin)–a second-generation photosensitizer. Photochem Photobiol 87(6):1240–1296. doi:10.1111/j.1751-1097.2011.00986.x

    Article  CAS  PubMed  Google Scholar 

  • Silva EF, Serpa C, Dabrowski JM, Monteiro CJ, Formosinho SJ, Stochel G, Urbanska K, Simoes S, Pereira MM, Arnaut LG (2010) Mechanisms of singlet-oxygen and superoxide-ion generation by porphyrins and bacteriochlorins and their implications in photodynamic therapy. Chemistry 16(30):9273–9286. doi:10.1002/chem.201000111

    Article  CAS  PubMed  Google Scholar 

  • Stockert JC, Canete M, Juarranz A, Villanueva A, Horobin RW, Borrell JI, Teixido J, Nonell S (2007) Porphycenes: facts and prospects in photodynamic therapy of cancer. Curr Med Chem 14(9):997–1026

    Article  CAS  PubMed  Google Scholar 

  • Triesscheijn M, Baas P, Schellens JH, Stewart FA (2006) Photodynamic therapy in oncology. Oncologist 11(9):1034–1044. doi:10.1634/theoncologist.11-9-1034

    Article  CAS  PubMed  Google Scholar 

  • Wagner A, Kiesslich T, Neureiter D, Friesenbichler P, Puespoek A, Denzer UW, Wolkersdorfer GW, Emmanuel K, Lohse AW, Berr F (2013) Photodynamic therapy for hilar bile duct cancer: clinical evidence for improved tumoricidal tissue penetration by temoporfin. Photochem Photobiol Sci 12(6):1065–1073. doi:10.1039/c3pp25425a

    CAS  PubMed  Google Scholar 

  • Yan YJ, Zheng MZ, Chen ZL, Yu XH, Yang XX, Ding ZL, Xu L (2010) Studies on preparation and photodynamic mechanism of chlorin P6-13,15-N-(cyclohexyl)cycloimide (Chlorin-H) and its antitumor effect for photodynamic therapy in vitro and in vivo. Bioorg Med Chem 18(17):6282–6291. doi:10.1016/j.bmc.2010.07.027

    Article  CAS  PubMed  Google Scholar 

  • Yow CM, Chen JY, Mak NK, Cheung NH, Leung AW (2000) Cellular uptake, subcellular localization and photodamaging effect of temoporfin (mTHPC) in nasopharyngeal carcinoma cells: comparison with hematoporphyrin derivative. Cancer Lett 157(2):123–131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Chinese National Natural Science Foundation (21372042, 81101298), Foundation of Shanghai government (13431900700, 13430722300, 13ZR1441000, 13ZR1440900), and Foundation of Yiwu Science and Technology Bureau (2011-G1-15).

Conflict of interest

We declare that we have no conflict of interest in relation to this article exists.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Long Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LJ., Bian, J., Bao, LL. et al. Photosensitizing effectiveness of a novel chlorin-based photosensitizer for photodynamic therapy in vitro and in vivo. J Cancer Res Clin Oncol 140, 1527–1536 (2014). https://doi.org/10.1007/s00432-014-1717-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-014-1717-0

Keywords

Navigation