[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Conic-like subdivision curves on surfaces

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

In this paper, we introduce a novel nonlinear curve subdivision scheme, suitable for designing curves on surfaces. The scheme is based on the concept of geodesic conic Bézier curves, which represents a natural extension of geodesic Bézier curves for the rational quadratic case. Given a set of points on a surface S, the scheme generates a sequence of geodesic polygons that converges to a continuous curve on S. If the surface S is C 2-continuous, then the subdivision curve is C 1-continuous and if S is a plane, then the limit curve is a conic Bézier spline curve. Each section of the subdivision curve depends on a free parameter that may be used to obtain a local control of the shape of the subdivision curve. Extending these results to triangulated surfaces, it is shown that the scheme has the convex hull property and that it is suitable for free-form design on triangulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bonneau, G., Hahmann, S.: Smooth polylines on polygon meshes. In: Brunnett, G., Hamann, B., Müller, H., Linsen, L. (eds.) Mathematics and Visualization, pp. 69–84. Springer, Berlin (2004). ISBN 978-3-540-40116-2

    Google Scholar 

  2. Crouch, P., Kun, G., Silva, F.: The de Casteljau algorithm on Lie groups and spheres. J. Dyn. Control Syst. 5, 397–429 (1999)

    Article  MATH  Google Scholar 

  3. Dyn, N.: Subdivision schemes in CAGD. In: Advances in Numerical Analysis, vol. II, pp. 36–104. Oxford Univ. Press, London (1992)

    Google Scholar 

  4. Dyn, N., Grohs, P., Wallner, J.: Approximation order of interpolatory nonlinear subdivision schemes. J. Comput. Appl. Math. 233, 1698–1703 (2010)

    Article  MathSciNet  Google Scholar 

  5. Farin, G.: Algorithms for rational Bézier curves. Comput. Aided Des. 15, 277–279 (1983)

    Article  Google Scholar 

  6. Farin, G.: Curvature continuity and offsets for piecewise conics. ACM Trans. Graph. 8, 89–99 (1989)

    Article  MATH  Google Scholar 

  7. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  8. Hofer, M., Pottmann, H.: Energy-minimizing splines in manifolds. In: ACM Trans. Graph., vol. 23, pp. 284–293. ACM Press, New York (2004)

    Google Scholar 

  9. Kapoor, S.: Efficient computation of geodesic shortest paths. In: Proceedings of 31st Annual ACM Sympos. Theory Comput., pp. 770–779 (1999)

    Google Scholar 

  10. Kimmel, R., Sapiro, G.: Shortening three-dimensional curves via two-dimensional flows. Comput. Math. Appl. 29, 49–62 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kimmel, R., Sethian, J.A.: Computing geodesic paths on manifolds. In: Proceedings of the National Academy of Sciences of the USA, vol. 95, pp. 8431–8435 (1998)

    Google Scholar 

  12. Kasap, E., Yapici, M., Akyildiz, F.T.: A numerical study for computation of geodesic curves. In: Applied Mathematics and Computation, vol. 171, 1206–1213. Elsevier, Amsterdam (2005)

    Google Scholar 

  13. Martínez, D., Velho, L., Carvalho, P.C.: Computing geodesics on triangular meshes. In: Computer and Graphics, vol. 29, pp. 667–675. Elsevier, Amsterdam (2005)

    Google Scholar 

  14. Martínez, D., Carvalho, P.C., Velho, L.: Modeling on triangulations with geodesic curves. Vis. Comput. 24, 1025–1037 (2008)

    Article  Google Scholar 

  15. Martínez, D., Velho, L., Carvalho, P.C.: Subdivision curves on surfaces and applications. In: Proceedings of CIARP 2008. Lecture Notes in Computer Science, vol. 5197, pp. 405–412. Springer, Berlin (2008)

    Google Scholar 

  16. Patterson, R.: Projective transformations of the parameter of a rational Bernstein-Bézier curve. ACM Trans. Graph. 4, 276–290 (1986)

    Article  Google Scholar 

  17. Rodriguez, R.C., Leite, F.S., Jacubiak, J.: A new geometric algorithm to generate smooth interpolating curves on Riemannian manifolds. LMS J. Comput. Math. 8, 251–266 (2005)

    MathSciNet  Google Scholar 

  18. Sethian, J.A.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. USA 93, 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Wallner, J., Dyn, N.: Convergence and C 1 analysis of subdivision schemes on manifolds by proximity. Comput. Aided Geom. Des. 22, 593–622 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wallner, J., Pottmann, H.: Intrinsic subdivision with smooth limits for graphics and animation. ACM Trans. Graph. 25, 356–374 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The first two authors has been supported by TWAS-UNESCO-CNPq and Visgraf-IMPA Brazil in the frame of the TWAS-UNESCO/CNPq-Brazil Associateship Ref. 3240173676 and Ref. 3240173677, respectively. We thank to the anonymous referees for their valuable criticisms and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimas Martínez Morera.

Additional information

This paper is an extended version of the work “Geodesic conic subdivision curves on surfaces” presented in the Conference SIBGRAPI’2011, held in Maceió, Brazil, in August 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrada Sarlabous, J., Hernández Mederos, V., Martínez Morera, D. et al. Conic-like subdivision curves on surfaces. Vis Comput 28, 971–982 (2012). https://doi.org/10.1007/s00371-012-0728-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-012-0728-6

Keywords

Navigation