Abstract
The COVID-19 pandemic resulted in a significant increase in the workload for the emergency systems and healthcare providers all around the world. The emergency systems are dealing with large number of patients in various stages of deteriorating conditions which require significant medical expertise for accurate and rapid diagnosis and treatment. This issue will become more prominent in places with lack of medical experts and state-of-the-art clinical equipment, especially in developing countries. The machine intelligence aided medical diagnosis systems can provide rapid, dependable, autonomous, and low-cost solutions for medical diagnosis in emergency conditions. In this paper, a privacy-preserving computer-aided diagnosis (CAD) framework, called Decentralized deep Emergency response Intelligence (D-EI), which provides secure machine learning based medical diagnosis on the cloud is proposed. The proposed framework provides a blockchain based decentralized machine learning solution to aid the health providers with medical diagnosis in emergency conditions. The D-EI uses blockchain smart contracts to train the CAD machine learning models using all the data on the medical cloud while preserving the privacy of patients’ records. Using the proposed framework, the data of each patient helps to increase the overall accuracy of the CAD model by balancing the diagnosis datasets with minority classes and special cases. As a case study, the D-EI is demonstrated as a solution for COVID-19 diagnosis. The D-EI framework can help in pandemic management by providing rapid and accurate diagnosis in overwhelming medical workload conditions.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Majidi, B., Hemmati, O., Baniardalan, F., Farahmand, H., Hajitabar, A., Sharafi, S., Aghajani, K., Esmaeili, A., Manzuri, M.T.: Geo-spatiotemporal intelligence for smart agricultural and environmental eco-cyber-physical systems. In: Enabling AI Applications in Data Science, pp. 471–491. Springer (2021)
Nazerdeylami, A., Majidi, B., Movaghar, A.: Smart coastline environment management using deep detection of manmade pollution and hazards. In: 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), 2019. IEEE
Abbasi, M.H., Majidi, B., Eshghi, M., Abbasi, E.H.: Deep visual privacy preserving for internet of robotic things. In: 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), 2019. IEEE
Heldt, F.S., Vizcaychipi, M.P., Peacock, S., Cinelli, M., McLachlan, L., Andreotti, F., Jovanovié, S., Dürichen, R., Lipunova, N., Fletcher, R.A., Hancock, A., McCarthy, A., Pointon, R.A., Brown, A., Eaton, J., Liddi, R., Mackillop, L., Tarassenko, L., Khan, R.T.: Early risk assessment for COVID-19 patients from emergency department data using machine learning. Sci. Rep. 11(1), 4200 (2021). https://doi.org/10.1038/s41598-021-83784-y
Casiraghi, E., Malchiodi, D., Trucco, G., Frasca, M., Cappelletti, L., Fontana, T., Esposito, A.A., Avola, E., Jachetti, A., Reese, J., Rizzi, A., Robinson, P.N., Valentini, G.: Explainable machine learning for early assessment of COVID-19 risk prediction in emergency departments. IEEE Access 8, 196299–196325 (2020). https://doi.org/10.1109/ACCESS.2020.3034032
Zame, W.R., Bica, I., Shen, C., Curth, A., Lee, H.-S., Bailey, S., Weatherall, J., Wright, D., Bretz, F., van der Schaar, M.: Machine learning for clinical trials in the era of COVID-19. Stat. Biopharm. Res. 12(4), 506–517 (2020). https://doi.org/10.1080/19466315.2020.1797867
Gatto, M., Bertuzzo, E., Mari, L., Miccoli, S., Carraro, L., Casagrandi, R., Rinaldo, A.: Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures. Proc. Natl. Acad. Sci. 117(19), 10484 (2020). https://doi.org/10.1073/pnas.2004978117
de Moraes Batista, A.F., Miraglia, J.L., Rizzi Donato, T.H., Porto Chiavegatto Filho, A.D.: COVID-19 diagnosis prediction in emergency care patients: a machine learning approach. medRxiv (2020). https://doi.org/10.1101/2020.04.04.20052092
Ducray, V., Vlachomitrou, A.S., Bouscambert-Duchamp, M., Si-Mohamed, S., Gouttard, S., Mansuy, A., Wickert, F., Sigal, A., Gaymard, A., Talbot, F., Michel, C., Perpoint, T., Pialat, J.-B., Rouviere, O., Milot, L., Cotton, F., Douek, P., Rabilloud, M., Boussel, L., Argaud, L., Aubrun, F., Bohe, J., Bonnefoy, M., Chapurlat, R., Chassard, D., Chidiac, C., Chuzeville, M., Confavreux, C., Couraud, S., Devouassoux, G., Durieu, I., Fellahi, J.-L., Gaujard, S., Gaymard, A., Hot, A., Krolak-Salmon, P., Lantelme, P., Lina, B., Luaute, J., Lukaszewicz, A.C., Martin-Gaujard, G., Mornex, J.F., Potinet, V., Rimmele, T., Rode, G., Sève, F.P., Sigal, A., Zoulim, F.: Chest CT for rapid triage of patients in multiple emergency departments during COVID-19 epidemic: experience report from a large French university hospital. Eur. Radiol. 31(2), 795–803 (2021). https://doi.org/10.1007/s00330-020-07154-4
Imran, A., Posokhova, I., Qureshi, H.N., Masood, U., Riaz, M.S., Ali, K., John, C.N., Hussain, M.D.I., Nabeel, M.: AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app. Informatics in Medicine Unlocked (2020). https://doi.org/10.1016/j.imu.2020.100378
Yu, K.P., Tan, L., Aloqaily, M., Yang, H., Jararweh, Y.: Blockchain-enhanced data sharing with traceable and direct revocation in IIoT. IEEE Trans. Ind. Inf. (2021). https://doi.org/10.1109/TII.2021.3049141
Tan, L., Xiao, H., Yu, K., Aloqaily, M., Jararweh, Y.: A blockchain-empowered crowdsourcing system for 5G-enabled smart cities. Comput. Standards & Interfaces 76, 103517 (2021). https://doi.org/10.1016/j.csi.2021.103517
Gupta, M., Jain, R., Kumari, M., Narula, G.: Securing healthcare data by using blockchain. In: Namasudra, S., Deka, G.C. (eds.) Applications of blockchain in healthcare, pp. 93–114. Springer Singapore, Singapore (2021)
Sharma, P., Jindal, R., Borah, M.D.: Healthify: a blockchain-based distributed application for health care. In: Namasudra, S., Deka, G.C. (eds.) Applications of blockchain in healthcare, pp. 171–198. Springer Singapore, Singapore (2021)
Bittins, S., Kober, G., Margheri, A., Masi, M., Miladi, A., Sassone, V.: Healthcare data management by using blockchain technology. In: Namasudra, S., Deka, G.C. (eds.) Applications of blockchain in healthcare, pp. 1–27. Springer Singapore, Singapore (2021)
Malina, L., Srivastava, G., Dzurenda, P., Hajny, J., Ricci, S.: A privacy-enhancing framework for internet of things services. In: International Conference on Network and System Security, pp. 77–97. Springer International Publishing, in Network and System Security, Cham (2019)
Shen, M., Tang, X., Zhu, L., Du, X., Guizani, M.: Privacy-preserving support vector machine training over blockchain-based encrypted IoT data in smart cities. IEEE Internet Things J. 6(5), 7702–7712 (2019)
Makhdoom, I., Zhou, I., Abolhasan, M., Lipman, J., Ni, W.: PrivySharing: a blockchain-based framework for privacy-preserving and secure data sharing in smart cities. Comput. & Secur. (2020). https://doi.org/10.1016/j.cose.2019.101653
Chen, C.-L., Deng, Y.-Y., Weng, W., Sun, H., Zhou, M.: A blockchain-based secure inter-hospital EMR sharing system. Appl. Sci. 10(14), 4958 (2020)
Dai, H.-N., Imran, M., Haider, N.: Blockchain-enabled Internet of Medical Things to Combat COVID-19. arXiv preprint arXiv:2008.09933 (2020)
Shu, H., Qi, P., Huang, Y., Chen, F., Xie, D., Sun, L.: An efficient certificateless aggregate signature scheme for blockchain-based medical cyber physical systems. Sensors 20(5), 1521 (2020)
Jaleel, A., Mahmood, T., Hassan, M.A., Bano, G., Khurshid, S.K.: Towards medical data interoperability through collaboration of healthcare devices. IEEE Access 8, 132302–132319 (2020)
Yu, K., Tan, L., Shang, X., Huang, J., Srivastava, G., Chatterjee, P.: Efficient and privacy-preserving medical research support platform against COVID-19: a blockchain-based approach. IEEE Consumer Electron. Magazine 10(2), 111–120 (2021). https://doi.org/10.1109/MCE.2020.3035520
Fadaeddini, A., Majidi, B., Eshghi, M.: Secure decentralized peer-to-peer training of deep neural networks based on distributed ledger technology. J. Supercomput. 76(12), 10354–10368 (2020)
Fadaeddini, A., Majidi, B., Eshghi, M.: Privacy preserved decentralized deep learning: A blockchain based solution for secure ai-driven enterprise. In: International Congress on High-Performance Computing and Big Data Analysis. Springer (2019)
Mohanta, B.K., Panda, S.S., Jena, D.: An overview of smart contract and use cases in blockchain technology. In: 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–4 (2018)
Huang, Y., Bian, Y., Li, R., Zhao, J.L., Shi, P.: Smart contract security: a software lifecycle perspective. IEEE Access 7, 150184–150202 (2019). https://doi.org/10.1109/ACCESS.2019.2946988
Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G., Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N.: Formal verification of smart contracts: Short paper. In: Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security, pp. 91–96 (2016)
Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.: Securify: practical security analysis of smart contracts. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 67–82 (2018)
Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart contracts. In: NDSS, pp. 1–12 (2018)
OpenZeppelin. https://openzeppelin.com/contracts/. Accessed 27 Feb 2021
SmartDec. https://smartcontracts.smartdec.net/. Accessed 27 Feb 2021
Alt L., Reitwießner, C.: SMT-based verification of solidity smart contracts. In: International Symposium on Leveraging Applications of Formal Methods, pp. 376–388. Springer (2018)
Benet, J.: InterPlanetary File System. https://ipfs.io/. Accessed 17 Dec 2020
Entriken, W.: Introduction to smart contracts. https://ethereum.org/en/developers/docs/smart-contracts/. Accessed 30 Nov 2020
MetaMask. https://metamask.io/. Accessed 17 Dec 2020
Solidity. https://docs.soliditylang.org/en/v0.5.0/resources.html. Accessed 17 Dec 2020
Truffle Suite. https://www.trufflesuite.com/. Accessed 17 Dec 2020
Ganache. https://www.trufflesuite.com/ganache. Accessed 17 Dec 2020
web3.js. https://web3js.readthedocs.io/en/v1.3.0/. Accessed 17 Dec 2020
OpenZeppelin’s AccessControl Module. https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol. Accessed 2 Mar 2021
Kovan Testnet. https://kovan-testnet.github.io/website/. Accessed 15 Dec 2020
Infura. https://infura.io/. Accessed 15 Dec 2020
Meng, T., Jing, X., Yan, Z., Pedrycz, W.: A survey on machine learning for data fusion. Inf. Fusion 57, 115–129 (2020). https://doi.org/10.1016/j.inffus.2019.12.001
Arevalo-Rodriguez, I., Buitrago-Garcia, D., Simancas-Racines, D., Zambrano-Achig, P., Del Campo, R., Ciapponi, A., Sued, O., Martinez-Garcia, L., Rutjes, A.W., Low, N.: False-negative results of initial RT-PCR assays for COVID-19: a systematic review. PloS One 15(12), 0242958 (2020)
Watson, J., Whiting, P. F., Brush, J. E.: Interpreting a COVID-19 test result. BMJ 369 (2020)
Jain, R., Gupta, M., Taneja, S., Hemanth, D.J.: Deep learning based detection and analysis of COVID-19 on chest X-ray images. Appl. Intell. 51(3), 1690–1700 (2021). https://doi.org/10.1007/s10489-020-01902-1
Shi, S., Qin, M., Shen, B., Cai, Y., Liu, T., Yang, F., Gong, W., Liu, X., Liang, J., Zhao, Q.: Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan. JAMA cardiology, China (2020)
Moody, G.B., Mark, R.G.: The impact of the MIT-BIH Arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)
Kachuee, M., Fazeli, S., Sarrafzadeh, M.: ECG Heartbeat Classification: a deep transferable representation. In: IEEE International Conference on Healthcare Informatics (ICHI) 2018, 443–444 (2018)
Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., San Tan, R.: A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017)
Kaspal, R., Alsadoon, A., Prasad, P.W.C., Al-Saiyd, N.A., Nguyen, T.Q.V., Pham, D.T.H.: A novel approach for early prediction of sudden cardiac death (SCD) using hybrid deep learning. Multimedia Tools Appl. (2020). https://doi.org/10.1007/s11042-020-10150-x
Malik, J., Loring, Z., Piccini, J.P., Wu, H.T.: Interpretable morphological features for efficient single-lead automatic ventricular ectopy detection. J. Electrocardiol. (2020). https://doi.org/10.1016/j.jelectrocard.2020.11.014
Khan, M.M.R., Siddique, M.A.B., Sakib, S., Aziz, A., Tanzeem, A.K., Hossain, Z.: Electrocardiogram heartbeat classification using convolutional neural networks for the detection of cardiac Arrhythmia. In: 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 915–920 (2020). https://doi.org/10.1109/I-SMAC49090.2020.9243474
Alfaras, M., Soriano, M.C., Ortín, S.: A fast machine learning model for ECG-based heartbeat classification and Arrhythmia detection, (in English). Front. Phys. (2019). https://doi.org/10.3389/fphy.2019.00103
COVID-19 Cough Recordings. https://www.kaggle.com/himanshu007121/coughclassifier-trial. Accessed 2 Mar 2021
Sharma, N., Krishnan, P., Kumar, R., Ramoji, S., Chetupalli, S.R., Ghosh, P.K., Ganapathy, S.: Coswara–A database of breathing, cough, and voice sounds for COVID-19 Diagnosis. arXiv preprint arXiv:2005.10548 (2020)
Coswara dataset. https://github.com/iiscleap/Coswara-Data. Accessed 3 Mar 2021
Vijayakumar, D.S., Sneha, M.: Low cost Covid-19 preliminary diagnosis utilizing cough samples and keenly intellective deep learning approaches. Alexandria Eng. J. 60(1), 549–557 (2021). https://doi.org/10.1016/j.aej.2020.09.032
Mouawad, P., Dubnov, T., Dubnov, S.: Robust detection of COVID-19 in cough sounds. SN Comput. Sci. 2(1), 34 (2021). https://doi.org/10.1007/s42979-020-00422-6
Chest X-ray (Covid-19 & Pneumonia). https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia. Accessed 2 Mar 2021
Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Acharya, U.R.: Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 121, 103792 (2020)
Yoo, S.H., Geng, H., Chiu, T.L., Yu, S.K., Cho, D.C., Heo, J., Choi, M.S., Choi, I.H., Van Cung, C., Nhung, N.V.: Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imaging. Front. Med. 7, 427 (2020)
Sethy, P.K., Behera, S.K., Ratha, P.K., Biswas, P.: Detection of coronavirus disease (COVID-19) based on deep features and support vector machine. Preprints (2020)
Panwar, H., Gupta, P.K., Siddiqui, M.K., Morales-Menendez, R., Singh, V.: Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos, Solitons & Fractals 138, 109944 (2020)
C.-C. Scans. https://www.kaggle.com/andrewmvd/covid19-ct-scans. Accessed 3 Mar 2021
Glick. COVID-19 Pneumonia. https://radiopaedia.org/playlists/25887. Accessed 3 Mar 2021
Paiva, O.: CT scans of patients with COVID-19 from Wenzhou Medical University. https://coronacases.org/. Accessed 3 Mar 2021
Jun, M., Cheng, G., Yixin, W., Xingle, A., Jiantao, G., Ziqi, Y., Minqing, Z., Xin, L., Xueyuan, D., Shucheng, C., Hao, W., Sen, M., Xiaoyu, Y., Ziwei, N., Chen, L., Lu, T., Yuntao, Z., Qiongjie, Z., Guoqiang, D., Jian, H.: COVID-19 CT Lung and Infection Segmentation Dataset. https://doi.org/10.5281/zenodo.3757475. Accessed 3 Mar 2021
Singh, D., Kumar, V., Kaur, M.: Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks. Eur. J. Clin. Microbiol. Infectious Dis. 39(7), 1379–1389 (2020)
Wang, X., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., Zheng, C.: A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE Trans. Med. Imaging 39(8), 2615–2625 (2020)
Ahuja, S., Panigrahi, B.K., Dey, N., Rajinikanth, V., Gandhi, T.K.: Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices. Appl. Intell. 51(1), 571–585 (2021)
Funding
This study has no funding.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Informed consent
Informed consent was obtained from all individual participants included in the study.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
About this article
Cite this article
Peyvandi, A., Majidi, B., Peyvandi, S. et al. Computer-Aided-Diagnosis as a Service on Decentralized Medical Cloud for Efficient and Rapid Emergency Response Intelligence. New Gener. Comput. 39, 677–700 (2021). https://doi.org/10.1007/s00354-021-00131-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00354-021-00131-5