[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Computer-Aided-Diagnosis as a Service on Decentralized Medical Cloud for Efficient and Rapid Emergency Response Intelligence

  • Published:
New Generation Computing Aims and scope Submit manuscript

Abstract

The COVID-19 pandemic resulted in a significant increase in the workload for the emergency systems and healthcare providers all around the world. The emergency systems are dealing with large number of patients in various stages of deteriorating conditions which require significant medical expertise for accurate and rapid diagnosis and treatment. This issue will become more prominent in places with lack of medical experts and state-of-the-art clinical equipment, especially in developing countries. The machine intelligence aided medical diagnosis systems can provide rapid, dependable, autonomous, and low-cost solutions for medical diagnosis in emergency conditions. In this paper, a privacy-preserving computer-aided diagnosis (CAD) framework, called Decentralized deep Emergency response Intelligence (D-EI), which provides secure machine learning based medical diagnosis on the cloud is proposed. The proposed framework provides a blockchain based decentralized machine learning solution to aid the health providers with medical diagnosis in emergency conditions. The D-EI uses blockchain smart contracts to train the CAD machine learning models using all the data on the medical cloud while preserving the privacy of patients’ records. Using the proposed framework, the data of each patient helps to increase the overall accuracy of the CAD model by balancing the diagnosis datasets with minority classes and special cases. As a case study, the D-EI is demonstrated as a solution for COVID-19 diagnosis. The D-EI framework can help in pandemic management by providing rapid and accurate diagnosis in overwhelming medical workload conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Majidi, B., Hemmati, O., Baniardalan, F., Farahmand, H., Hajitabar, A., Sharafi, S., Aghajani, K., Esmaeili, A., Manzuri, M.T.: Geo-spatiotemporal intelligence for smart agricultural and environmental eco-cyber-physical systems. In: Enabling AI Applications in Data Science, pp. 471–491. Springer (2021)

  2. Nazerdeylami, A., Majidi, B., Movaghar, A.: Smart coastline environment management using deep detection of manmade pollution and hazards. In: 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), 2019. IEEE

  3. Abbasi, M.H., Majidi, B., Eshghi, M., Abbasi, E.H.: Deep visual privacy preserving for internet of robotic things. In: 2019 5th Conference on Knowledge Based Engineering and Innovation (KBEI), 2019. IEEE

  4. Heldt, F.S., Vizcaychipi, M.P., Peacock, S., Cinelli, M., McLachlan, L., Andreotti, F., Jovanovié, S., Dürichen, R., Lipunova, N., Fletcher, R.A., Hancock, A., McCarthy, A., Pointon, R.A., Brown, A., Eaton, J., Liddi, R., Mackillop, L., Tarassenko, L., Khan, R.T.: Early risk assessment for COVID-19 patients from emergency department data using machine learning. Sci. Rep. 11(1), 4200 (2021). https://doi.org/10.1038/s41598-021-83784-y

    Article  Google Scholar 

  5. Casiraghi, E., Malchiodi, D., Trucco, G., Frasca, M., Cappelletti, L., Fontana, T., Esposito, A.A., Avola, E., Jachetti, A., Reese, J., Rizzi, A., Robinson, P.N., Valentini, G.: Explainable machine learning for early assessment of COVID-19 risk prediction in emergency departments. IEEE Access 8, 196299–196325 (2020). https://doi.org/10.1109/ACCESS.2020.3034032

    Article  Google Scholar 

  6. Zame, W.R., Bica, I., Shen, C., Curth, A., Lee, H.-S., Bailey, S., Weatherall, J., Wright, D., Bretz, F., van der Schaar, M.: Machine learning for clinical trials in the era of COVID-19. Stat. Biopharm. Res. 12(4), 506–517 (2020). https://doi.org/10.1080/19466315.2020.1797867

    Article  Google Scholar 

  7. Gatto, M., Bertuzzo, E., Mari, L., Miccoli, S., Carraro, L., Casagrandi, R., Rinaldo, A.: Spread and dynamics of the COVID-19 epidemic in Italy: effects of emergency containment measures. Proc. Natl. Acad. Sci. 117(19), 10484 (2020). https://doi.org/10.1073/pnas.2004978117

    Article  Google Scholar 

  8. de Moraes Batista, A.F., Miraglia, J.L., Rizzi Donato, T.H., Porto Chiavegatto Filho, A.D.: COVID-19 diagnosis prediction in emergency care patients: a machine learning approach. medRxiv (2020). https://doi.org/10.1101/2020.04.04.20052092

  9. Ducray, V., Vlachomitrou, A.S., Bouscambert-Duchamp, M., Si-Mohamed, S., Gouttard, S., Mansuy, A., Wickert, F., Sigal, A., Gaymard, A., Talbot, F., Michel, C., Perpoint, T., Pialat, J.-B., Rouviere, O., Milot, L., Cotton, F., Douek, P., Rabilloud, M., Boussel, L., Argaud, L., Aubrun, F., Bohe, J., Bonnefoy, M., Chapurlat, R., Chassard, D., Chidiac, C., Chuzeville, M., Confavreux, C., Couraud, S., Devouassoux, G., Durieu, I., Fellahi, J.-L., Gaujard, S., Gaymard, A., Hot, A., Krolak-Salmon, P., Lantelme, P., Lina, B., Luaute, J., Lukaszewicz, A.C., Martin-Gaujard, G., Mornex, J.F., Potinet, V., Rimmele, T., Rode, G., Sève, F.P., Sigal, A., Zoulim, F.: Chest CT for rapid triage of patients in multiple emergency departments during COVID-19 epidemic: experience report from a large French university hospital. Eur. Radiol. 31(2), 795–803 (2021). https://doi.org/10.1007/s00330-020-07154-4

    Article  Google Scholar 

  10. Imran, A., Posokhova, I., Qureshi, H.N., Masood, U., Riaz, M.S., Ali, K., John, C.N., Hussain, M.D.I., Nabeel, M.: AI4COVID-19: AI enabled preliminary diagnosis for COVID-19 from cough samples via an app. Informatics in Medicine Unlocked (2020). https://doi.org/10.1016/j.imu.2020.100378

  11. Yu, K.P., Tan, L., Aloqaily, M., Yang, H., Jararweh, Y.: Blockchain-enhanced data sharing with traceable and direct revocation in IIoT. IEEE Trans. Ind. Inf. (2021). https://doi.org/10.1109/TII.2021.3049141

    Article  Google Scholar 

  12. Tan, L., Xiao, H., Yu, K., Aloqaily, M., Jararweh, Y.: A blockchain-empowered crowdsourcing system for 5G-enabled smart cities. Comput. Standards & Interfaces 76, 103517 (2021). https://doi.org/10.1016/j.csi.2021.103517

    Article  Google Scholar 

  13. Gupta, M., Jain, R., Kumari, M., Narula, G.: Securing healthcare data by using blockchain. In: Namasudra, S., Deka, G.C. (eds.) Applications of blockchain in healthcare, pp. 93–114. Springer Singapore, Singapore (2021)

    Chapter  Google Scholar 

  14. Sharma, P., Jindal, R., Borah, M.D.: Healthify: a blockchain-based distributed application for health care. In: Namasudra, S., Deka, G.C. (eds.) Applications of blockchain in healthcare, pp. 171–198. Springer Singapore, Singapore (2021)

    Chapter  Google Scholar 

  15. Bittins, S., Kober, G., Margheri, A., Masi, M., Miladi, A., Sassone, V.: Healthcare data management by using blockchain technology. In: Namasudra, S., Deka, G.C. (eds.) Applications of blockchain in healthcare, pp. 1–27. Springer Singapore, Singapore (2021)

    Google Scholar 

  16. Malina, L., Srivastava, G., Dzurenda, P., Hajny, J., Ricci, S.: A privacy-enhancing framework for internet of things services. In: International Conference on Network and System Security, pp. 77–97. Springer International Publishing, in Network and System Security, Cham (2019)

  17. Shen, M., Tang, X., Zhu, L., Du, X., Guizani, M.: Privacy-preserving support vector machine training over blockchain-based encrypted IoT data in smart cities. IEEE Internet Things J. 6(5), 7702–7712 (2019)

    Article  Google Scholar 

  18. Makhdoom, I., Zhou, I., Abolhasan, M., Lipman, J., Ni, W.: PrivySharing: a blockchain-based framework for privacy-preserving and secure data sharing in smart cities. Comput. & Secur. (2020). https://doi.org/10.1016/j.cose.2019.101653

    Article  Google Scholar 

  19. Chen, C.-L., Deng, Y.-Y., Weng, W., Sun, H., Zhou, M.: A blockchain-based secure inter-hospital EMR sharing system. Appl. Sci. 10(14), 4958 (2020)

    Article  Google Scholar 

  20. Dai, H.-N., Imran, M., Haider, N.: Blockchain-enabled Internet of Medical Things to Combat COVID-19. arXiv preprint arXiv:2008.09933 (2020)

  21. Shu, H., Qi, P., Huang, Y., Chen, F., Xie, D., Sun, L.: An efficient certificateless aggregate signature scheme for blockchain-based medical cyber physical systems. Sensors 20(5), 1521 (2020)

    Article  Google Scholar 

  22. Jaleel, A., Mahmood, T., Hassan, M.A., Bano, G., Khurshid, S.K.: Towards medical data interoperability through collaboration of healthcare devices. IEEE Access 8, 132302–132319 (2020)

    Article  Google Scholar 

  23. Yu, K., Tan, L., Shang, X., Huang, J., Srivastava, G., Chatterjee, P.: Efficient and privacy-preserving medical research support platform against COVID-19: a blockchain-based approach. IEEE Consumer Electron. Magazine 10(2), 111–120 (2021). https://doi.org/10.1109/MCE.2020.3035520

    Article  Google Scholar 

  24. Fadaeddini, A., Majidi, B., Eshghi, M.: Secure decentralized peer-to-peer training of deep neural networks based on distributed ledger technology. J. Supercomput. 76(12), 10354–10368 (2020)

    Article  Google Scholar 

  25. Fadaeddini, A., Majidi, B., Eshghi, M.: Privacy preserved decentralized deep learning: A blockchain based solution for secure ai-driven enterprise. In: International Congress on High-Performance Computing and Big Data Analysis. Springer (2019)

  26. Mohanta, B.K., Panda, S.S., Jena, D.: An overview of smart contract and use cases in blockchain technology. In: 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), pp. 1–4 (2018)

  27. Huang, Y., Bian, Y., Li, R., Zhao, J.L., Shi, P.: Smart contract security: a software lifecycle perspective. IEEE Access 7, 150184–150202 (2019). https://doi.org/10.1109/ACCESS.2019.2946988

    Article  Google Scholar 

  28. Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Gollamudi, A., Gonthier, G., Kobeissi, N., Kulatova, N., Rastogi, A., Sibut-Pinote, T., Swamy, N.: Formal verification of smart contracts: Short paper. In: Proceedings of the 2016 ACM Workshop on Programming Languages and Analysis for Security, pp. 91–96 (2016)

  29. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.: Securify: practical security analysis of smart contracts. In: Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security, pp. 67–82 (2018)

  30. Kalra, S., Goel, S., Dhawan, M., Sharma, S.: ZEUS: analyzing safety of smart contracts. In: NDSS, pp. 1–12 (2018)

  31. OpenZeppelin. https://openzeppelin.com/contracts/. Accessed 27 Feb 2021

  32. SmartDec. https://smartcontracts.smartdec.net/. Accessed 27 Feb 2021

  33. Alt L., Reitwießner, C.: SMT-based verification of solidity smart contracts. In: International Symposium on Leveraging Applications of Formal Methods, pp. 376–388. Springer (2018)

  34. Benet, J.: InterPlanetary File System. https://ipfs.io/. Accessed 17 Dec 2020

  35. Entriken, W.: Introduction to smart contracts. https://ethereum.org/en/developers/docs/smart-contracts/. Accessed 30 Nov 2020

  36. MetaMask. https://metamask.io/. Accessed 17 Dec 2020

  37. Solidity. https://docs.soliditylang.org/en/v0.5.0/resources.html. Accessed 17 Dec 2020

  38. Truffle Suite. https://www.trufflesuite.com/. Accessed 17 Dec 2020

  39. Ganache. https://www.trufflesuite.com/ganache. Accessed 17 Dec 2020

  40. web3.js. https://web3js.readthedocs.io/en/v1.3.0/. Accessed 17 Dec 2020

  41. OpenZeppelin’s AccessControl Module. https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/access/AccessControl.sol. Accessed 2 Mar 2021

  42. Kovan Testnet. https://kovan-testnet.github.io/website/. Accessed 15 Dec 2020

  43. Infura. https://infura.io/. Accessed 15 Dec 2020

  44. Meng, T., Jing, X., Yan, Z., Pedrycz, W.: A survey on machine learning for data fusion. Inf. Fusion 57, 115–129 (2020). https://doi.org/10.1016/j.inffus.2019.12.001

    Article  Google Scholar 

  45. Arevalo-Rodriguez, I., Buitrago-Garcia, D., Simancas-Racines, D., Zambrano-Achig, P., Del Campo, R., Ciapponi, A., Sued, O., Martinez-Garcia, L., Rutjes, A.W., Low, N.: False-negative results of initial RT-PCR assays for COVID-19: a systematic review. PloS One 15(12), 0242958 (2020)

    Article  Google Scholar 

  46. Watson, J., Whiting, P. F., Brush, J. E.: Interpreting a COVID-19 test result. BMJ 369 (2020)

  47. Jain, R., Gupta, M., Taneja, S., Hemanth, D.J.: Deep learning based detection and analysis of COVID-19 on chest X-ray images. Appl. Intell. 51(3), 1690–1700 (2021). https://doi.org/10.1007/s10489-020-01902-1

    Article  Google Scholar 

  48. Shi, S., Qin, M., Shen, B., Cai, Y., Liu, T., Yang, F., Gong, W., Liu, X., Liang, J., Zhao, Q.: Association of cardiac injury with mortality in hospitalized patients with COVID-19 in Wuhan. JAMA cardiology, China (2020)

    Book  Google Scholar 

  49. Moody, G.B., Mark, R.G.: The impact of the MIT-BIH Arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  50. Kachuee, M., Fazeli, S., Sarrafzadeh, M.: ECG Heartbeat Classification: a deep transferable representation. In: IEEE International Conference on Healthcare Informatics (ICHI) 2018, 443–444 (2018)

  51. Acharya, U.R., Oh, S.L., Hagiwara, Y., Tan, J.H., Adam, M., Gertych, A., San Tan, R.: A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 89, 389–396 (2017)

    Article  Google Scholar 

  52. Kaspal, R., Alsadoon, A., Prasad, P.W.C., Al-Saiyd, N.A., Nguyen, T.Q.V., Pham, D.T.H.: A novel approach for early prediction of sudden cardiac death (SCD) using hybrid deep learning. Multimedia Tools Appl. (2020). https://doi.org/10.1007/s11042-020-10150-x

    Article  Google Scholar 

  53. Malik, J., Loring, Z., Piccini, J.P., Wu, H.T.: Interpretable morphological features for efficient single-lead automatic ventricular ectopy detection. J. Electrocardiol. (2020). https://doi.org/10.1016/j.jelectrocard.2020.11.014

    Article  Google Scholar 

  54. Khan, M.M.R., Siddique, M.A.B., Sakib, S., Aziz, A., Tanzeem, A.K., Hossain, Z.: Electrocardiogram heartbeat classification using convolutional neural networks for the detection of cardiac Arrhythmia. In: 2020 Fourth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC), pp. 915–920 (2020). https://doi.org/10.1109/I-SMAC49090.2020.9243474

  55. Alfaras, M., Soriano, M.C., Ortín, S.: A fast machine learning model for ECG-based heartbeat classification and Arrhythmia detection, (in English). Front. Phys. (2019). https://doi.org/10.3389/fphy.2019.00103

    Article  Google Scholar 

  56. COVID-19 Cough Recordings. https://www.kaggle.com/himanshu007121/coughclassifier-trial. Accessed 2 Mar 2021

  57. Sharma, N., Krishnan, P., Kumar, R., Ramoji, S., Chetupalli, S.R., Ghosh, P.K., Ganapathy, S.: Coswara–A database of breathing, cough, and voice sounds for COVID-19 Diagnosis. arXiv preprint arXiv:2005.10548 (2020)

  58. Coswara dataset. https://github.com/iiscleap/Coswara-Data. Accessed 3 Mar 2021

  59. Vijayakumar, D.S., Sneha, M.: Low cost Covid-19 preliminary diagnosis utilizing cough samples and keenly intellective deep learning approaches. Alexandria Eng. J. 60(1), 549–557 (2021). https://doi.org/10.1016/j.aej.2020.09.032

    Article  Google Scholar 

  60. Mouawad, P., Dubnov, T., Dubnov, S.: Robust detection of COVID-19 in cough sounds. SN Comput. Sci. 2(1), 34 (2021). https://doi.org/10.1007/s42979-020-00422-6

    Article  Google Scholar 

  61. Chest X-ray (Covid-19 & Pneumonia). https://www.kaggle.com/prashant268/chest-xray-covid19-pneumonia. Accessed 2 Mar 2021

  62. Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Acharya, U.R.: Automated detection of COVID-19 cases using deep neural networks with X-ray images. Comput. Biol. Med. 121, 103792 (2020)

    Article  Google Scholar 

  63. Yoo, S.H., Geng, H., Chiu, T.L., Yu, S.K., Cho, D.C., Heo, J., Choi, M.S., Choi, I.H., Van Cung, C., Nhung, N.V.: Deep learning-based decision-tree classifier for COVID-19 diagnosis from chest X-ray imaging. Front. Med. 7, 427 (2020)

    Article  Google Scholar 

  64. Sethy, P.K., Behera, S.K., Ratha, P.K., Biswas, P.: Detection of coronavirus disease (COVID-19) based on deep features and support vector machine. Preprints (2020)

  65. Panwar, H., Gupta, P.K., Siddiqui, M.K., Morales-Menendez, R., Singh, V.: Application of deep learning for fast detection of COVID-19 in X-Rays using nCOVnet. Chaos, Solitons & Fractals 138, 109944 (2020)

    Article  MathSciNet  Google Scholar 

  66. C.-C. Scans. https://www.kaggle.com/andrewmvd/covid19-ct-scans. Accessed 3 Mar 2021

  67. Glick. COVID-19 Pneumonia. https://radiopaedia.org/playlists/25887. Accessed 3 Mar 2021

  68. Paiva, O.: CT scans of patients with COVID-19 from Wenzhou Medical University. https://coronacases.org/. Accessed 3 Mar 2021

  69. Jun, M., Cheng, G., Yixin, W., Xingle, A., Jiantao, G., Ziqi, Y., Minqing, Z., Xin, L., Xueyuan, D., Shucheng, C., Hao, W., Sen, M., Xiaoyu, Y., Ziwei, N., Chen, L., Lu, T., Yuntao, Z., Qiongjie, Z., Guoqiang, D., Jian, H.: COVID-19 CT Lung and Infection Segmentation Dataset. https://doi.org/10.5281/zenodo.3757475. Accessed 3 Mar 2021

  70. Singh, D., Kumar, V., Kaur, M.: Classification of COVID-19 patients from chest CT images using multi-objective differential evolution-based convolutional neural networks. Eur. J. Clin. Microbiol. Infectious Dis. 39(7), 1379–1389 (2020)

    Article  Google Scholar 

  71. Wang, X., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., Zheng, C.: A weakly-supervised framework for COVID-19 classification and lesion localization from chest CT. IEEE Trans. Med. Imaging 39(8), 2615–2625 (2020)

    Article  Google Scholar 

  72. Ahuja, S., Panigrahi, B.K., Dey, N., Rajinikanth, V., Gandhi, T.K.: Deep transfer learning-based automated detection of COVID-19 from lung CT scan slices. Appl. Intell. 51(1), 571–585 (2021)

    Article  Google Scholar 

Download references

Funding

This study has no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babak Majidi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peyvandi, A., Majidi, B., Peyvandi, S. et al. Computer-Aided-Diagnosis as a Service on Decentralized Medical Cloud for Efficient and Rapid Emergency Response Intelligence. New Gener. Comput. 39, 677–700 (2021). https://doi.org/10.1007/s00354-021-00131-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00354-021-00131-5

Keywords