[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Geometric-feature-based design of spatially varying multiscale structure with quasi-conformal mapping

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

For spatially varying multiscale configurations (SVMSCs) that increasingly gain engineering perspective, a design scheme enabling the direct tuning of their microstructural layouts is still desired. Challenges lie behind the fact that an arbitrary setting on the (field) distributions about the microstructural geometric features is likely to violate the underlying conditions of total differential, and the article is aimed to resolve the issue systematically. This is done by representing (two-dimensional) SVMSCs from the viewpoint of quasi-conformal mapping, where the microstructural profile can be summarised by a (complete) family consisting of four geometric feature fields. By modifying the so-called Beltrami equations that automatically satisfy the total differential condition, the relationships among these four geometric feature fields can be explicitly derived, and their degrees of freedom are reduced to two. Different choices for which two field quantities as the free design variables result in various geometric-feature-based modes, which almost cover all scenarios of SVMSC design by means of directly tuning their microstructural profiles. Furthermore, we can now directly manipulate the stretch ratio, one of the four field variables, to avoid ill microstructural distortion, which has been a challenging issue for SVMSCs representation. Fueled by an asymptotic homogenisation scheme (Zhu et al. in J Mech Phys Solids 124:612–633, 2019, https://doi.org/10.1016/j.jmps.2018.11.008), the present method is then employed for geometric-feature-based compliance design of SVMSC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

Download references

Funding

The financial supports from National Key Research and Development Plan (2020YFB1709401) from the Ministry of Science and Technology of the People’s Republic of China, and the National Natural Science Foundation of China (12172074, 11732004, 11821202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yichao Zhu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Replication of results

All the data underlying the argument in the article are generated by locally devised MATLAB codes consisting of a set of systematically arranged sub-function modules (such as homogenisation). We are willing to satisfy the reasonable and responsible demand for the data and the source codes underpinning the present article.

Additional information

Responsible Editor: Gregoire Allaire

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Appendices

Appendix A: the range for \(r_a\) and \(\psi\)

This appendix concludes the range for \(r_a\) and \(\psi\) by finding the maximal and minimal values of Eqs. (15) and (16) in the scope \(D = \{\left( \varsigma ,\alpha \right) |\frac{1}{\varsigma _m}\le \varsigma \le \varsigma _m, -\alpha _m\le \alpha \le \alpha _m\}\).

To be more intuitive, Eqs. (15) and (16) are rewritten as

$$\begin{aligned} r_a^2 = \frac{1+\varsigma ^4}{\left( \varsigma ^4-1\right) \cos ^2\alpha +1}-1 \end{aligned}$$
(A1)

and

$$\begin{aligned} \cos ^2\psi = 1-\frac{4}{4+\left( \varsigma ^2-\frac{1}{\varsigma ^2}\right) ^2\sin ^22\alpha }, \end{aligned}$$
(A2)

, respectively.

We consider \(r_a\) first. If \(\alpha _m \ge \frac{\pi }{2}\), it is evident that

$$\begin{aligned}&\frac{1}{\varsigma ^4_m}\le \frac{1}{\varsigma ^4} \le \frac{1+\varsigma ^4}{\left( \varsigma ^4-1\right) \cos ^2\alpha +1}\nonumber \\&-1 \le \varsigma ^4 \le \varsigma _m^4, \quad 1 \le \varsigma \le \varsigma _m \end{aligned}$$
(A3a)
$$\begin{aligned}&\frac{1}{\varsigma ^4_m}\le \varsigma ^4 \le \frac{1+\varsigma ^4}{\left( \varsigma ^4-1\right) \cos ^2\alpha +1}\nonumber \\&-1 \le \frac{1}{\varsigma ^4} \le \varsigma _m^4, \quad \frac{1}{\varsigma _m} \le \varsigma \le 1. \end{aligned}$$
(A3b)

As for the case of \(\alpha _m < \frac{\pi }{2}\), we have

$$\begin{aligned}&\frac{1}{\varsigma ^4_m}\le \frac{1}{\varsigma ^4} \le \frac{1+\varsigma ^4}{\left( \varsigma ^4-1\right) \cos ^2\alpha +1}\nonumber \\&-1 \le \frac{1+\varsigma ^4}{\left( \varsigma ^4-1\right) \cos ^2\alpha _m+1}-1 < \varsigma ^4, \quad 1 \le \varsigma \le \varsigma _m \end{aligned}$$
(A4a)
$$\begin{aligned}&\varsigma ^4 < \frac{1+\varsigma ^4}{\left( \varsigma ^4-1\right) \cos ^2\alpha _m+1}\nonumber \\&-1 \le \frac{1+\varsigma ^4}{\left( \varsigma ^4-1\right) \cos ^2\alpha +1}-1 \le \frac{1}{\varsigma ^4} \le \varsigma _m^4, \quad \frac{1}{\varsigma _m} \le \varsigma \le 1. \end{aligned}$$
(A4b)

Thus, when \(\left( \varsigma ,\alpha \right) \in D\), the minimal value of \(r_a\) is \(\frac{1}{\varsigma ^2_m}\), and the maximum is \(\varsigma _m^2\).

Then, we analyse Eq. (A2). Note that \(\cos ^2\psi\) increases with the growth of \(\sin ^2 2\alpha\) and \(\left( \varsigma ^2-\frac{1}{\varsigma ^2}\right) ^2\). Thus

$$\begin{aligned} 0 \le \cos ^2\psi \le \left\{ \begin{aligned}&1-\frac{4}{4+\left( \varsigma _m^2-\frac{1}{\varsigma _m^2}\right) ^2\sin ^22\alpha _m}=\frac{\left( \varsigma _m^4-1\right) ^2\sin ^2 2\alpha _m}{\left( \varsigma _m^4-1\right) ^2\sin ^2 2\alpha _m+4\varsigma _m^4},\quad 0\le \alpha _m < \frac{\pi }{4,}\\&1-\frac{4}{4+\left( \varsigma _m^2-\frac{1}{\varsigma _m^2}\right) ^2} = \left( \frac{\varsigma ^4_m-1}{\varsigma ^4_m+1}\right) ^2, \quad \alpha _m\ge \frac{\pi }{4} \end{aligned} \right. \end{aligned}$$
(A5)

for each \(\left( \varsigma ,\alpha \right) \in D\). Therefore, the range for \(\psi\) is determined.

Appendix B: derivation of the geometric-feature-based governing equations

This appendix proves that \(\lambda _l\), \(\varsigma _l\), \(\alpha\) , and \(\beta\) satisfy Eq. (21). Firstly, expanding Eqs. (20a, 20b) and substituting

$$\begin{aligned} \lambda = e^{\lambda _l}, \qquad \varsigma = e^{\varsigma _l} \end{aligned}$$
(B6)

into gives

$$\begin{aligned} \begin{aligned}&e^{-\lambda _l}\left( e^{-\varsigma _l}\sin \beta \cos \alpha -e^{\varsigma _l}\cos \beta \sin \alpha \right) \mathchoice{\frac{{\partial }\lambda _l}{{\partial }x_1}}{{\partial }\lambda _l/{\partial }x_1}{{\partial }\lambda _l/{\partial }x_1}{{\partial }\lambda _l/{\partial }x_1}\\&-e^{-\lambda _l}\left( e^{-\varsigma _l}\cos \beta \cos \alpha +e^{\varsigma _l}\sin \beta \sin \alpha \right) \mathchoice{\frac{{\partial }\lambda _l}{{\partial }x_2}}{{\partial }\lambda _l/{\partial }x_2}{{\partial }\lambda _l/{\partial }x_2}{{\partial }\lambda _l/{\partial }x_2}\\&+e^{-\lambda _l}\left( e^{-\varsigma _l}\sin \beta \cos \alpha +e^{\varsigma _l}\cos \beta \sin \alpha \right) \mathchoice{\frac{{\partial }\varsigma _l}{{\partial }x_1}}{{\partial }\varsigma _l/{\partial }x_1}{{\partial }\varsigma _l/{\partial }x_1}{{\partial }\varsigma _l/{\partial }x_1}\\&+e^{-\lambda _l}\left( -e^{-\varsigma _l}\cos \beta \cos \alpha +e^{\varsigma _l}\sin \beta \sin \alpha \right) \mathchoice{\frac{{\partial }\varsigma _l}{{\partial }x_2}}{{\partial }\varsigma _l/{\partial }x_2}{{\partial }\varsigma _l/{\partial }x_2}{{\partial }\varsigma _l/{\partial }x_2}\\&+e^{-\lambda _l}\left( e^{-\varsigma _l}\sin \beta \sin \alpha +e^{\varsigma _l}\cos \beta \cos \alpha \right) \mathchoice{\frac{{\partial }\alpha }{{\partial }x_1}}{{\partial }\alpha /{\partial }x_1}{{\partial }\alpha /{\partial }x_1}{{\partial }\alpha /{\partial }x_1}\\&+e^{-\lambda _l}\left( -e^{-\varsigma _l}\cos \beta \sin \alpha +e^{\varsigma _l}\sin \beta \cos \alpha \right) \mathchoice{\frac{{\partial }\alpha }{{\partial }x_2}}{{\partial }\alpha /{\partial }x_2}{{\partial }\alpha /{\partial }x_2}{{\partial }\alpha /{\partial }x_2}\\&-e^{-\lambda _l}\left( e^{-\varsigma _l}\cos \beta \cos \alpha +e^{\varsigma _l}\sin \beta \sin \alpha \right) \mathchoice{\frac{{\partial }\beta }{{\partial }x_1}}{{\partial }\beta /{\partial }x_1}{{\partial }\beta /{\partial }x_1}{{\partial }\beta /{\partial }x_1}\\&-e^{-\lambda _l}\left( e^{-\varsigma _l}\sin \beta \cos \alpha -e^{\varsigma _l}\cos \beta \sin \alpha \right) \mathchoice{\frac{{\partial }\beta }{{\partial }x_2}}{{\partial }\beta /{\partial }x_2}{{\partial }\beta /{\partial }x_2}{{\partial }\beta /{\partial }x_2}\\&=0, \end{aligned} \end{aligned}$$
(B7a)
$$\begin{aligned} \begin{aligned}&e^{-\lambda _l}\left( e^{-\varsigma _l}\sin \beta \sin \alpha +e^{\varsigma _l}\cos \beta \cos \alpha \right) \mathchoice{\frac{{\partial }\lambda _l}{{\partial }x_1}}{{\partial }\lambda _l/{\partial }x_1}{{\partial }\lambda _l/{\partial }x_1}{{\partial }\lambda _l/{\partial }x_1}\\&-e^{-\lambda _l}\left( e^{-\varsigma _l}\cos \beta \sin \alpha -e^{\varsigma _l}\sin \beta \cos \alpha \right) \mathchoice{\frac{{\partial }\lambda _l}{{\partial }x_2}}{{\partial }\lambda _l/{\partial }x_2}{{\partial }\lambda _l/{\partial }x_2}{{\partial }\lambda _l/{\partial }x_2}\\&+e^{-\lambda _l}\left( e^{-\varsigma _l}\sin \beta \sin \alpha -e^{\varsigma _l}\cos \beta \cos \alpha \right) \mathchoice{\frac{{\partial }\varsigma _l}{{\partial }x_1}}{{\partial }\varsigma _l/{\partial }x_1}{{\partial }\varsigma _l/{\partial }x_1}{{\partial }\varsigma _l/{\partial }x_1}\\&-e^{-\lambda _l}\left( e^{-\varsigma _l}\cos \beta \sin \alpha +e^{\varsigma _l}\sin \beta \cos \alpha \right) \mathchoice{\frac{{\partial }\varsigma _l}{{\partial }x_2}}{{\partial }\varsigma _l/{\partial }x_2}{{\partial }\varsigma _l/{\partial }x_2}{{\partial }\varsigma _l/{\partial }x_2}\\&-e^{-\lambda _l}\left( e^{-\varsigma _l}\sin \beta \cos \alpha -e^{\varsigma _l}\cos \beta \sin \alpha \right) \mathchoice{\frac{{\partial }\alpha }{{\partial }x_1}}{{\partial }\alpha /{\partial }x_1}{{\partial }\alpha /{\partial }x_1}{{\partial }\alpha /{\partial }x_1}\\&+e^{-\lambda _l}\left( e^{-\varsigma _l}\cos \beta \cos \alpha +e^{\varsigma _l}\sin \beta \sin \alpha \right) \mathchoice{\frac{{\partial }\alpha }{{\partial }x_2}}{{\partial }\alpha /{\partial }x_2}{{\partial }\alpha /{\partial }x_2}{{\partial }\alpha /{\partial }x_2}\\&-e^{-\lambda _l}\left( e^{-\varsigma _l}\cos \beta \sin \alpha -e^{\varsigma _l}\sin \beta \cos \alpha \right) \mathchoice{\frac{{\partial }\beta }{{\partial }x_1}}{{\partial }\beta /{\partial }x_1}{{\partial }\beta /{\partial }x_1}{{\partial }\beta /{\partial }x_1}\\&-e^{-\lambda _l}\left( e^{-\varsigma _l}\sin \beta \sin \alpha +e^{\varsigma _l}\cos \beta \cos \alpha \right) \mathchoice{\frac{{\partial }\beta }{{\partial }x_2}}{{\partial }\beta /{\partial }x_2}{{\partial }\beta /{\partial }x_2}{{\partial }\beta /{\partial }x_2}\\&=0. \end{aligned} \end{aligned}$$
(B7b)

Then, re-writing Eqs. (B7a, B7b) in matrix form and extracting the common factor gives

$$\begin{aligned} \begin{aligned}&e^{-\lambda _l} \begin{bmatrix} e^{-\varsigma _l}\cos \alpha &{}-e^{\varsigma _l}\sin \alpha \\ e^{-\varsigma _l}\sin \alpha &{}e^{\varsigma _l}\cos \alpha \end{bmatrix} \left( \begin{bmatrix} \sin \beta &{}-\cos \beta \\ \cos \beta &{}\sin \beta \end{bmatrix} \begin{bmatrix} \mathchoice{\frac{{\partial }\lambda _l}{{\partial }x_1}}{{\partial }\lambda _l/{\partial }x_1}{{\partial }\lambda _l/{\partial }x_1}{{\partial }\lambda _l/{\partial }x_1}\\ \mathchoice{\frac{{\partial }\lambda _l}{{\partial }x_2}}{{\partial }\lambda _l/{\partial }x_2}{{\partial }\lambda _l/{\partial }x_2}{{\partial }\lambda _l/{\partial }x_2} \end{bmatrix}\right. \\&\left. +\begin{bmatrix} \sin \beta &{}-\cos \beta \\ -\cos \beta &{}-\sin \beta \end{bmatrix} \begin{bmatrix} \mathchoice{\frac{{\partial }\varsigma _l}{{\partial }x_1}}{{\partial }\varsigma _l/{\partial }x_1}{{\partial }\varsigma _l/{\partial }x_1}{{\partial }\varsigma _l/{\partial }x_1}\\ \mathchoice{\frac{{\partial }\varsigma _l}{{\partial }x_2}}{{\partial }\varsigma _l/{\partial }x_2}{{\partial }\varsigma _l/{\partial }x_2}{{\partial }\varsigma _l/{\partial }x_2} \end{bmatrix} \right. \\&\left. + \begin{bmatrix} e^{2\varsigma _l} \cos \beta &{}e^{2\varsigma _l} \sin \beta \\ -e^{-2\varsigma _l} \sin \beta &{}e^{-2\varsigma _l} \cos \beta \end{bmatrix} \begin{bmatrix} \mathchoice{\frac{{\partial }\alpha }{{\partial }x_1}}{{\partial }\alpha /{\partial }x_1}{{\partial }\alpha /{\partial }x_1}{{\partial }\alpha /{\partial }x_1}\\ \mathchoice{\frac{{\partial }\alpha }{{\partial }x_2}}{{\partial }\alpha /{\partial }x_2}{{\partial }\alpha /{\partial }x_2}{{\partial }\alpha /{\partial }x_2} \end{bmatrix}\right. \\&\left. +\begin{bmatrix} -\cos \beta &{}-\sin \beta \\ \sin \beta &{}-\cos \beta \end{bmatrix} \begin{bmatrix} \mathchoice{\frac{{\partial }\beta }{{\partial }x_1}}{{\partial }\beta /{\partial }x_1}{{\partial }\beta /{\partial }x_1}{{\partial }\beta /{\partial }x_1}\\ \mathchoice{\frac{{\partial }\beta }{{\partial }x_2}}{{\partial }\beta /{\partial }x_2}{{\partial }\beta /{\partial }x_2}{{\partial }\beta /{\partial }x_2} \end{bmatrix}\right) ={\begin{bmatrix} 0\\ 0 \end{bmatrix}}. \end{aligned} \end{aligned}$$
(B8)

Since \(e^{-\lambda _l} \left[ {\begin{array}{*{20}{c}} e^{-\varsigma _l}\cos \alpha &{} -e^{\varsigma _l}\sin \alpha \\ e^{-\varsigma _l}\sin \alpha &{} e^{\varsigma _l}\cos \alpha \end{array}} \right]\) is invertible, it can be eliminated from Eq. (B8). As a result, Eq. (21) is obtained.

Appendix C: the specific representation of the coefficient matrices

The representations and determinants of the coefficient matrices in Eq. (29) are listed in this appendix.

$$\begin{aligned}&\begin{aligned}&{\textbf {M}}^{\lambda _l\alpha } = -\left[ {\begin{array}{*{20}{c}} \cos \textit{h}2\varsigma _l+\sin \textit{h}2\varsigma _l\cos 2\beta &{} \sin \textit{h} 2\varsigma _l\sin 2\beta \\ \sin \textit{h} 2\varsigma _l\sin 2\beta &{} \cos \textit{h}2\varsigma _l-\sin \textit{h}2\varsigma _l\cos 2\beta \end{array}} \right] ,\\&{\textbf {M}}^{\alpha \lambda _l} = \left[ {\begin{array}{*{20}{c}} \cos \textit{h}2\varsigma _l+\sin \textit{h}2\varsigma _l\cos 2\beta &{} \sin \textit{h} 2\varsigma _l\sin 2\beta \\ \sin \textit{h} 2\varsigma _l\sin 2\beta &{} \cos \textit{h}2\varsigma _l-\sin \textit{h}2\varsigma _l\cos 2\beta \end{array}} \right] , \end{aligned} \end{aligned}$$
(C9a)
$$\begin{aligned}&\det {\textbf {M}}^{\lambda _l\alpha } = \det {\textbf {M}}^{\alpha \lambda _l}= 1, \end{aligned}$$
(C9b)
$$\begin{aligned}&{\textbf {M}}^{\lambda _l\beta } = \left[ {\begin{array}{*{20}{c}} 1&{}0\\ 0&{}1\ \end{array}} \right] ,\qquad {\textbf {M}}^{\beta \lambda _l} = -\left[ {\begin{array}{*{20}{c}} 1&{}0\\ 0&{}1 \end{array}} \right] , \end{aligned}$$
(C9c)
$$\begin{aligned}&\det {\textbf {M}}^{\lambda _l\beta } = \det {\textbf {M}}^{\beta \lambda _l} = 1, \end{aligned}$$
(C9d)
$$\begin{aligned}&{\textbf {M}}^{\varsigma _l\lambda _l} ={\textbf {M}}^{\lambda _l\varsigma _l} = \left[ {\begin{array}{*{20}{c}} -\sin 2\beta &{}\cos 2\beta \\ \cos 2\beta &{}\sin 2\beta \ \end{array}} \right] , \end{aligned}$$
(C9e)
$$\begin{aligned}&\det {\textbf {M}}^{\varsigma _l\lambda _l} = \det {\textbf {M}}^{\lambda _l\varsigma _l}=-1, \end{aligned}$$
(C9f)
$$\begin{aligned}&{\textbf {M}}^{\varsigma _l\beta }={\textbf {M}}^{\beta \varsigma _l}= \left[ {\begin{array}{*{20}{c}} \cos 2\beta &{}\sin 2\beta \\ \sin 2\beta &{}-\cos 2\beta \ \end{array}} \right] , \end{aligned}$$
(C9g)
$$\begin{aligned}&\det {\textbf {M}}^{\varsigma _l\beta }=\det {\textbf {M}}^{\beta \varsigma _l}=-1, \end{aligned}$$
(C9h)
$$\begin{aligned}&\begin{aligned}&{\textbf {M}}^{\alpha \beta }= \left[ {\begin{array}{*{20}{c}} \sin \textit{h}2\varsigma _l\sin 2\beta &{}-\cos \textit{h}2\varsigma _l-\sin \textit{h}2\varsigma _l\cos 2\beta \\ \cos \textit{h}2\varsigma _l-\sin \textit{h}2\varsigma _l\cos 2\beta &{}-\sin \textit{h}2\varsigma _l\sin 2\beta \end{array}} \right] ,\\&{\textbf {M}}^{\beta \alpha }= \left[ {\begin{array}{*{20}{c}} -\sin \textit{h}2\varsigma _l\sin 2\beta &{}-\cos \textit{h}2\varsigma _l+\sin \textit{h}2\varsigma _l\cos 2\beta \\ \cos \textit{h}2\varsigma _l+\sin \textit{h}2\varsigma _l\cos 2\beta &{}\sin \textit{h}2\varsigma _l\sin 2\beta \end{array}} \right] , \end{aligned} \end{aligned}$$
(C9i)
$$\begin{aligned}&\det {\textbf {M}}^{\alpha \beta }=1, \quad \det {\textbf {M}}^{\beta \alpha } = 1, \end{aligned}$$
(C9j)
$$\begin{aligned}&{\textbf {M}}^{\alpha \varsigma _l}={\textbf {M}}^{\varsigma _l\alpha } = -\left[ {\begin{array}{*{20}{c}} \sin \textit{h}2\varsigma _l+\cos \textit{h}2\varsigma _l\cos 2\beta &{}\cos \textit{h}2\varsigma _l\sin 2\beta \\ \cos \textit{h}2\varsigma _l\sin 2\beta &{}\sin \textit{h}2\varsigma _l-\cos \textit{h}2\varsigma _l\cos 2\beta \end{array}} \right] , \end{aligned}$$
(C9k)
$$\begin{aligned}&\det {\textbf {M}}^{\alpha \varsigma _l}=\det {\textbf {M}}^{\varsigma _l\alpha } = -1, \end{aligned}$$
(C9l)

Appendix D: specific expressions of the sensitivity of Mode 1 and Mode 2

This appendix provides the sensitivity expressions of the optimisation formulations Eqs. (45) and (46), respectively.

Here, the geometric quantity fields (i.e. design variables) \(\beta\), \(\varsigma _l\), and \(\alpha\) are digitally represented as

$$\begin{aligned}&\beta = \sum ^{n}_{k=1}N_k\beta ^k,\quad \beta ^k \in {\textbf {Bn}} = \left( \beta ^1,\beta ^2,\ldots ,\beta ^n\right) ^{\top }, \end{aligned}$$
(D10a)
$$\begin{aligned}&\varsigma _l = \sum ^{n}_{k=1}N_k\varsigma _l^k,\quad \varsigma _l^k \in {\textbf {Sn}} = \left( \varsigma _l^1,\varsigma _l^2,\ldots ,\varsigma _l^n\right) ^{\top }, \end{aligned}$$
(D10b)
$$\begin{aligned}&\alpha = \sum ^{n}_{k=1}N_k \alpha ^k, \quad \alpha ^k \in {\textbf {An}} = \left( \alpha ^1,\alpha ^2,\ldots ,\alpha ^n\right) ^{\top }, \end{aligned}$$
(D10c)

where \(N_k\) represents the shape function of elements; \(\varsigma _l^k\), \(\alpha ^k\) and \(\beta ^k\) denote the values of the corresponding quantities on the nodes of elements. As for the \(\lambda _{lb}\) defined on the boundary, we introduce the arc-length coordinate s, and interpolate \(\lambda _{lb}\) along the closed curve of the boundary. In this scenario, \(\lambda _{lb}\) can be written as

$$\begin{aligned} \lambda _{lb}\left( s\right) =\sum ^{m}_{i=1} \omega _i\left( s\right) \lambda _{lb}^{i}, \quad \lambda _{lb}^{i} \in {\textbf {Lb}}=\left( \lambda _{lb}^{1},\lambda _{lb}^{2},\ldots ,\lambda _{lb}^{m}\right) ^{\top }, \end{aligned}$$
(D11)

where \(\lambda _{lb}^{i}\) represents the value of \(\lambda _{lb}\) on the interpolation nodes of \(\Gamma\); \(\omega _i\left( s\right)\) is the corresponding basis function.

For numerically given design variables \({\textbf {D}}=\left( {\textbf {Bn}}^{\top }, {\textbf {Sn}}^{\top }, {\textbf {Lb}}^{\top }, {{\bar{\alpha }}}\right) ^{\top }\), the sensitivity of the optimisation formulation Eq. (45) based on Mode 1 is categorised as

$$\begin{aligned} \mathchoice{\frac{{\partial }{\mathcal {C}}^{\text {H}}}{{\partial }v}}{{\partial }{\mathcal {C}}^{\text {H}}/{\partial }v}{{\partial }{\mathcal {C}}^{\text {H}}/{\partial }v}{{\partial }{\mathcal {C}}^{\text {H}}/{\partial }v}=\left\{ \begin{aligned}&\begin{aligned} -&\int _{\Omega }\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}\mathchoice{\frac{{\partial }M^{\lambda _l\alpha }_{ij}}{{\partial }\beta }}{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\beta }\mathchoice{\frac{{\partial }\beta }{{\partial }v}}{{\partial }\beta /{\partial }v}{{\partial }\beta /{\partial }v}{{\partial }\beta /{\partial }v}\mathchoice{\frac{{\partial }\alpha }{{\partial }x_j}}{{\partial }\alpha /{\partial }x_j}{{\partial }\alpha /{\partial }x_j}{{\partial }\alpha /{\partial }x_j}+\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i} M^{\lambda _l\beta }_{ij}\mathchoice{\frac{{\partial }}{{\partial }x_j}}{{\partial }/{\partial }x_j}{{\partial }/{\partial }x_j}{{\partial }/{\partial }x_j}\left( \mathchoice{\frac{{\partial }\beta }{{\partial }v}}{{\partial }\beta /{\partial }v}{{\partial }\beta /{\partial }v}{{\partial }\beta /{\partial }v}\right) +\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}\mathchoice{\frac{{\partial }M^{\lambda _l\varsigma _l}_{ij}}{{\partial }\beta }}{{\partial }M^{\lambda _l\varsigma _l}_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\varsigma _l}_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\varsigma _l}_{ij}/{\partial }\beta }\mathchoice{\frac{{\partial }\beta }{{\partial }v}}{{\partial }\beta /{\partial }v}{{\partial }\beta /{\partial }v}{{\partial }\beta /{\partial }v} \mathchoice{\frac{{\partial }\varsigma _l}{{\partial }x_j}}{{\partial }\varsigma _l/{\partial }x_j}{{\partial }\varsigma _l/{\partial }x_j}{{\partial }\varsigma _l/{\partial }x_j}\\&+\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\beta }}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }\mathchoice{\frac{{\partial }\beta }{{\partial }v}}{{\partial }\beta /{\partial }v}{{\partial }\beta /{\partial }v}{{\partial }\beta /{\partial }v}\mathchoice{\frac{{\partial }u_i^{\text {H}}}{{\partial }x_j}}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}\cdot \mathchoice{\frac{{\partial }u_k^{\text {H}}}{{\partial }x_l}}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}\mathop {}\!\textrm{d}{\textbf {x}}, \end{aligned}\quad{} & {} v \in {\textbf {Bn}},\\&-\int _{\Omega }\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}\mathchoice{\frac{{\partial }M^{\lambda _l\alpha }_{ij}}{{\partial }\varsigma _l}}{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\varsigma _l}{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\varsigma _l}{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\varsigma _l}\mathchoice{\frac{{\partial }\varsigma _l}{{\partial }v}}{{\partial }\varsigma _l/{\partial }v}{{\partial }\varsigma _l/{\partial }v}{{\partial }\varsigma _l/{\partial }v}\mathchoice{\frac{{\partial }\alpha }{{\partial }x_j}}{{\partial }\alpha /{\partial }x_j}{{\partial }\alpha /{\partial }x_j}{{\partial }\alpha /{\partial }x_j}+\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i} M^{\lambda _l\varsigma _l}_{ij} \mathchoice{\frac{{\partial }}{{\partial }x_j}}{{\partial }/{\partial }x_j}{{\partial }/{\partial }x_j}{{\partial }/{\partial }x_j}\left( \mathchoice{\frac{{\partial }\varsigma _l}{{\partial }v}}{{\partial }\varsigma _l/{\partial }v}{{\partial }\varsigma _l/{\partial }v}{{\partial }\varsigma _l/{\partial }v}\right) +\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\varsigma _l}}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\varsigma _l}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\varsigma _l}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\varsigma _l}\mathchoice{\frac{{\partial }\varsigma _l}{{\partial }v}}{{\partial }\varsigma _l/{\partial }v}{{\partial }\varsigma _l/{\partial }v}{{\partial }\varsigma _l/{\partial }v}\mathchoice{\frac{{\partial }u_i^{\text {H}}}{{\partial }x_j}}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}\cdot \mathchoice{\frac{{\partial }u_k^{\text {H}}}{{\partial }x_l}}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}\mathop {}\!\textrm{d}{\textbf {x}},\quad{} & {} v \in {\textbf {Sn}},\\&-\int _{\Gamma }{\mathscr {L}}\mathchoice{\frac{{\partial }}{{\partial }\varvec{\uptau }}}{{\partial }/{\partial }\varvec{\uptau }}{{\partial }/{\partial }\varvec{\uptau }}{{\partial }/{\partial }\varvec{\uptau }}\left( \mathchoice{\frac{{\partial }\lambda _{lb}}{{\partial }v}}{{\partial }\lambda _{lb}/{\partial }v}{{\partial }\lambda _{lb}/{\partial }v}{{\partial }\lambda _{lb}/{\partial }v}\right) \mathop {}\!\textrm{d}\Gamma ,\quad{} & {} v \in {\textbf {Lb}},\\&-\int _{\Omega }\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\alpha }}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }\mathchoice{\frac{{\partial }u_i^{\text {H}}}{{\partial }x_j}}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}\cdot \mathchoice{\frac{{\partial }u_k^{\text {H}}}{{\partial }x_l}}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}\mathop {}\!\textrm{d}{\textbf {x}},\quad{} & {} v ={{\bar{\alpha }}}, \end{aligned}\right. \end{aligned}$$
(D12)

where \({\mathscr {L}}\) denotes the corresponding Lagrange multiplier, satisfying the following Neumann problem

$$\begin{aligned} \left\{ \begin{aligned}&\mathchoice{\frac{{\partial }}{{\partial }x_j}}{{\partial }/{\partial }x_j}{{\partial }/{\partial }x_j}{{\partial }/{\partial }x_j}\left( M^{\lambda _l\alpha }_{ij}\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}\right) -\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\alpha }}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }\mathchoice{\frac{{\partial }u_i^{\text {H}}}{{\partial }x_j}}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}\cdot \mathchoice{\frac{{\partial }u_k^{\text {H}}}{{\partial }x_l}}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}+\frac{1}{\int _\Omega \mathop {}\!\textrm{d}\varvec{\xi }}\int _{\Omega }\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\alpha }}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha } \mathchoice{\frac{{\partial }u_i^{\text {H}}}{{\partial }x_j}}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}\cdot \mathchoice{\frac{{\partial }u_k^{\text {H}}}{{\partial }x_l}}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}\mathop {}\!\textrm{d}{\textbf {x}}=0,\\&n_jM^{\lambda _l\alpha }_{ij}\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}=0. \end{aligned} \right. \end{aligned}$$
(D13)

The sensitivity of Eq. (46) with respect to \({\textbf {D}} = \left( {\textbf {An}}^{\top },{\textbf {Sn}}^{\top },{\textbf {Lb}}^{\top },{{\bar{\beta }}}\right) ^{\top }\) is given by

$$\begin{aligned} \mathchoice{\frac{{\partial }{\mathcal {C}}^{\text {H}}}{{\partial }v}}{{\partial }{\mathcal {C}}^{\text {H}}/{\partial }v}{{\partial }{\mathcal {C}}^{\text {H}}/{\partial }v}{{\partial }{\mathcal {C}}^{\text {H}}/{\partial }v}=\left\{ \begin{aligned}&-\int _{\Omega } \mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}M^{\lambda _l\alpha }_{ij}\mathchoice{\frac{{\partial }}{{\partial }x_j}}{{\partial }/{\partial }x_j}{{\partial }/{\partial }x_j}{{\partial }/{\partial }x_j}\left( \mathchoice{\frac{{\partial }\alpha }{{\partial }v}}{{\partial }\alpha /{\partial }v}{{\partial }\alpha /{\partial }v}{{\partial }\alpha /{\partial }v}\right) +\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\alpha }}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }\mathchoice{\frac{{\partial }\alpha }{{\partial }v}}{{\partial }\alpha /{\partial }v}{{\partial }\alpha /{\partial }v}{{\partial }\alpha /{\partial }v}\mathchoice{\frac{{\partial }u_i^{\text {H}}}{{\partial }x_j}}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}\cdot \mathchoice{\frac{{\partial }u_k^{\text {H}}}{{\partial }x_l}}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}\mathop {}\!\textrm{d}{\textbf {x}}\quad{} & {} v \in {\textbf {An}},\\&-\int _{\Omega }\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}\mathchoice{\frac{{\partial }M^{\lambda _l\alpha }_{ij}}{{\partial }\varsigma _l}}{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\varsigma _l}{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\varsigma _l}{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\varsigma _l}\mathchoice{\frac{{\partial }\varsigma _l}{{\partial }v}}{{\partial }\varsigma _l/{\partial }v}{{\partial }\varsigma _l/{\partial }v}{{\partial }\varsigma _l/{\partial }v}\mathchoice{\frac{{\partial }\alpha }{{\partial }x_j}}{{\partial }\alpha /{\partial }x_j}{{\partial }\alpha /{\partial }x_j}{{\partial }\alpha /{\partial }x_j}+\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i} M^{\lambda _l\varsigma _l}_{ij} \mathchoice{\frac{{\partial }}{{\partial }x_j}}{{\partial }/{\partial }x_j}{{\partial }/{\partial }x_j}{{\partial }/{\partial }x_j}\left( \mathchoice{\frac{{\partial }\varsigma _l}{{\partial }v}}{{\partial }\varsigma _l/{\partial }v}{{\partial }\varsigma _l/{\partial }v}{{\partial }\varsigma _l/{\partial }v}\right) +\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\varsigma _l}}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\varsigma _l}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\varsigma _l}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\varsigma _l}\mathchoice{\frac{{\partial }\varsigma _l}{{\partial }v}}{{\partial }\varsigma _l/{\partial }v}{{\partial }\varsigma _l/{\partial }v}{{\partial }\varsigma _l/{\partial }v}\mathchoice{\frac{{\partial }u_i^{\text {H}}}{{\partial }x_j}}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}\cdot \mathchoice{\frac{{\partial }u_k^{\text {H}}}{{\partial }x_l}}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}\mathop {}\!\textrm{d}{\textbf {x}},\quad{} & {} v \in {\textbf {Sn}},\\&-\int _{\Gamma }{\mathscr {L}}\mathchoice{\frac{{\partial }}{{\partial }\varvec{\uptau }}}{{\partial }/{\partial }\varvec{\uptau }}{{\partial }/{\partial }\varvec{\uptau }}{{\partial }/{\partial }\varvec{\uptau }}\left( \mathchoice{\frac{{\partial }\lambda _{lb}}{{\partial }v}}{{\partial }\lambda _{lb}/{\partial }v}{{\partial }\lambda _{lb}/{\partial }v}{{\partial }\lambda _{lb}/{\partial }v}\right) \mathop {}\!\textrm{d}\Gamma ,\quad{} & {} v \in {\textbf {Lb}},\\&-\int _\Omega \mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}\mathchoice{\frac{{\partial }M^{\lambda _l\varsigma _l}_{ij}}{{\partial }\beta }}{{\partial }M^{\lambda _l\varsigma _l}_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\varsigma _l}_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\varsigma _l}_{ij}/{\partial }\beta }\mathchoice{\frac{{\partial }\varsigma _l}{{\partial }x_j}}{{\partial }\varsigma _l/{\partial }x_j}{{\partial }\varsigma _l/{\partial }x_j}{{\partial }\varsigma _l/{\partial }x_j} +\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}\mathchoice{\frac{{\partial }M^{\lambda _l\alpha }_{ij}}{{\partial }\beta }}{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\beta }\mathchoice{\frac{{\partial }\alpha }{{\partial }x_j}}{{\partial }\alpha /{\partial }x_j}{{\partial }\alpha /{\partial }x_j}{{\partial }\alpha /{\partial }x_j} +\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\beta }}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }\mathchoice{\frac{{\partial }u_i^{\text {H}}}{{\partial }x_j}}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}\cdot \mathchoice{\frac{{\partial }u_k^{\text {H}}}{{\partial }x_l}}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l} \mathop {}\!\textrm{d}{\textbf {x}},\quad{} & {} v ={{\bar{\beta }}}. \end{aligned}\right. \end{aligned}$$
(D14)

Here the Lagrange multiplier \({\mathscr {L}}\) in Eq. (D14) satisfies the following equation

$$\begin{aligned} \left\{ \begin{aligned}&\begin{aligned}&\mathchoice{\frac{{\partial }}{{\partial }x_j}}{{\partial }/{\partial }x_j}{{\partial }/{\partial }x_j}{{\partial }/{\partial }x_j}\left( M^{\lambda _l\beta }_{ij}\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}\right) =\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}\mathchoice{\frac{{\partial }M^{\lambda _l\varsigma _l}_{ij}}{{\partial }\beta }}{{\partial }M^{\lambda _l\varsigma _l}_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\varsigma _l}_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\varsigma _l}_{ij}/{\partial }\beta }\mathchoice{\frac{{\partial }\varsigma _l}{{\partial }x_j}}{{\partial }\varsigma _l/{\partial }x_j}{{\partial }\varsigma _l/{\partial }x_j}{{\partial }\varsigma _l/{\partial }x_j} +\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}\mathchoice{\frac{{\partial }M^{\lambda _l\alpha }_{ij}}{{\partial }\beta }}{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\beta }\mathchoice{\frac{{\partial }\alpha }{{\partial }x_j}}{{\partial }\alpha /{\partial }x_j}{{\partial }\alpha /{\partial }x_j}{{\partial }\alpha /{\partial }x_j} +\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\beta }}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }\mathchoice{\frac{{\partial }u_i^{\text {H}}}{{\partial }x_j}}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}\cdot \mathchoice{\frac{{\partial }u_k^{\text {H}}}{{\partial }x_l}}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}\\&-\frac{1}{\int _\Omega \mathop {}\!\textrm{d}\varvec{\xi }}\int _\Omega \mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}\mathchoice{\frac{{\partial }M^{\lambda _l\varsigma _l}_{ij}}{{\partial }\beta }}{{\partial }M^{\lambda _l\varsigma _l}_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\varsigma _l}_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\varsigma _l}_{ij}/{\partial }\beta }\mathchoice{\frac{{\partial }\varsigma _l}{{\partial }x_j}}{{\partial }\varsigma _l/{\partial }x_j}{{\partial }\varsigma _l/{\partial }x_j}{{\partial }\varsigma _l/{\partial }x_j} +\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}\mathchoice{\frac{{\partial }M^{\lambda _l\alpha }_{ij}}{{\partial }\beta }}{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\beta }{{\partial }M^{\lambda _l\alpha }_{ij}/{\partial }\beta }\mathchoice{\frac{{\partial }\alpha }{{\partial }x_j}}{{\partial }\alpha /{\partial }x_j}{{\partial }\alpha /{\partial }x_j}{{\partial }\alpha /{\partial }x_j} +\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\beta }}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta } \mathchoice{\frac{{\partial }u_i^{\text {H}}}{{\partial }x_j}}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}{{\partial }u_i^{\text {H}}/{\partial }x_j}\cdot \mathchoice{\frac{{\partial }u_k^{\text {H}}}{{\partial }x_l}}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l}{{\partial }u_k^{\text {H}}/{\partial }x_l} \mathop {}\!\textrm{d}{\textbf {x}}, \end{aligned}\\&n_jM^{\lambda _l\beta }_{ij}\mathchoice{\frac{{\partial }{\mathscr {L}}}{{\partial }x_i}}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}{{\partial }{\mathscr {L}}/{\partial }x_i}=0. \end{aligned} \right. \end{aligned}$$
(D15)

Referring to Eq. (40), the derivatives of \({\mathbb {C}}^{\text {H}}\) with respect to \(\beta\), \(\varsigma _l\) and \(\alpha\) in Eqs. (D12)–(D15) can be further expanded as

$$\begin{aligned}&\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\beta }}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\beta } =\mathchoice{\frac{{\partial }\left( R_{ip}R_{jq}R_{ks}R_{lt}\right) }{{\partial }\beta }}{{\partial }\left( R_{ip}R_{jq}R_{ks}R_{lt}\right) /{\partial }\beta }{{\partial }\left( R_{ip}R_{jq}R_{ks}R_{lt}\right) /{\partial }\beta }{{\partial }\left( R_{ip}R_{jq}R_{ks}R_{lt}\right) /{\partial }\beta }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}, \end{aligned}$$
(D16a)
$$\begin{aligned}&\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\varsigma _l}}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\varsigma _l}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\varsigma _l}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\varsigma _l} = R_{ip}R_{jq}R_{ks}R_{lt}\mathchoice{\frac{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}}{{\partial }\varsigma _l}}{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\varsigma _l}{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\varsigma _l}{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\varsigma _l}, \end{aligned}$$
(D16b)
$$\begin{aligned}&\mathchoice{\frac{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}}{{\partial }\alpha }}{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }{{\partial }{\mathbb {C}}^{\text {H}}_{ijkl}/{\partial }\alpha }=\mathchoice{\frac{{\partial }\left( R_{ip}R_{jq}R_{ks}R_{lt}\right) }{{\partial }\alpha }}{{\partial }\left( R_{ip}R_{jq}R_{ks}R_{lt}\right) /{\partial }\alpha }{{\partial }\left( R_{ip}R_{jq}R_{ks}R_{lt}\right) /{\partial }\alpha }{{\partial }\left( R_{ip}R_{jq}R_{ks}R_{lt}\right) /{\partial }\alpha }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}+ R_{ip}R_{jq}R_{ks}R_{lt}\mathchoice{\frac{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}}{{\partial }\alpha }}{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\alpha }{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\alpha }{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\alpha }, \end{aligned}$$
(D16c)

where \(\mathchoice{\frac{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}}{{\partial }\varsigma _l}}{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\varsigma _l}{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\varsigma _l}{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\varsigma _l}\) and \(\mathchoice{\frac{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}}{{\partial }\alpha }}{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\alpha }{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\alpha }{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\alpha }\) can be directly calculated with central difference scheme, i.e.

$$\begin{aligned}&\mathchoice{\frac{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}}{{\partial }\varsigma _l}}{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\varsigma _l}{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\varsigma _l}{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\varsigma _l} = \frac{\hat{{\mathbb {C}}}^{\text {H}}_{pqst}\left( \varsigma _l+\Delta \varsigma _l,\alpha \right) -\hat{{\mathbb {C}}}^{\text {H}}_{pqst}\left( \varsigma _l-\Delta \varsigma _l,\alpha \right) }{2\Delta \varsigma _l}, \end{aligned}$$
(D17a)
$$\begin{aligned}&\mathchoice{\frac{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}}{{\partial }\alpha }}{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\alpha }{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\alpha }{{\partial }\hat{{\mathbb {C}}}^{\text {H}}_{pqst}/{\partial }\alpha } = \frac{\hat{{\mathbb {C}}}^{\text {H}}_{pqst}\left( \varsigma _l,\alpha +\Delta \alpha \right) -\hat{{\mathbb {C}}}^{\text {H}}_{pqst}\left( \varsigma _l,\alpha -\Delta \alpha \right) }{2\Delta \alpha }. \end{aligned}$$
(D17b)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhu, Y. & Guo, X. Geometric-feature-based design of spatially varying multiscale structure with quasi-conformal mapping. Struct Multidisc Optim 67, 24 (2024). https://doi.org/10.1007/s00158-023-03713-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-023-03713-7

Keywords

Navigation