[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimal shape design as a material distribution problem

  • Originals
  • Published:
Structural optimization Aims and scope Submit manuscript

Abstract

Shape optimization in a general setting requires the determination of the optimal spatial material distribution for given loads and boundary conditions. Every point in space is thus a material point or a void and the optimization problem is a discrete variable one. This paper describes various ways of removing this discrete nature of the problem by the introduction of a density function that is a continuous design variable. Domains of high density then define the shape of the mechanical element. For intermediate densities, material parameters given by an artificial material law can be used. Alternatively, the density can arise naturally through the introduction of periodically distributed, microscopic voids, so that effective material parameters for intermediate density values can be computed through homogenization. Several examples in two-dimensional elasticity illustrate that these methods allow a determination of the topology of a mechanical element, as required for a boundary variations shape optimization technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Avellaneda, M. 1987: Optimal bounds and microgeometries for elastic two-phase composites.SIAM J. Appl. Math. 47, 1216–1228

    Google Scholar 

  • Bendsøe, M.P. 1983: On obtaining a solution to optimization problems for solid, elastic plates by restriction of the design space.J. Struct. Mech. 11, 501–521

    Google Scholar 

  • Bendsøe, M.P. 1986: Generalized plate models and optimal design. In: Eriksen, J.L.; Kinderlehrer, D.; Kohn, R.; Lions, J.-L., (eds.)Homogenization and effective moduli of materials and media, the IMA volumes in mathematics and its applications, pp. 1–26. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Bendsøe, M.P.; Kikuchi, N. 1988: Generating optimal topologies in structural design using a homogenization method.Comput. Meth. Appl. Mech. Engrg. 71, 197–224

    Google Scholar 

  • Bendsøe, M.P.; Rodrigues, H.C. 1989: Integrated topology and boundary shape optimization of 2-D solids.MAT-Report No.1989–14, Math. Inst., Techn. Univ. of Denmark, DK-2800 Lyngby

    Google Scholar 

  • Bensousson, A.; Lions, J.-L.; Papanicolaou, G. 1978:Asymptotic analysis for periodic structures. Amsterdam: North-Holland

    Google Scholar 

  • Bourgat, J.F. 1977: Numerical experiments of the homogenization method for operators with periodic coefficients.Lecture Notes in Mathematics 704, pp. 330–356, Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Cheng, K.T.; Olhoff, N. 1982: Regularized formulation for optimal design of axisymmetric plates.Int. J. Solids Struct. 18, 153–170

    Google Scholar 

  • Ding, Y. 1986: Shape optimization of structures: a literature survey.Comp. Struct. 24, 985–1004

    Google Scholar 

  • Goodman, J.; Kohn, R.V.; Reyna, L. 1986: Numerical study of a relaxed variational problem from optimal design.Comp. Meth. Appl. Mech. Engrg. 57, 107–127

    Google Scholar 

  • Haftka, R.T.; Gandhi, R.V. 1986: Structural shape optimization- a survey.Comp. Meth. Appl. Mech. Engrg. 57, 91–106

    Google Scholar 

  • Kohn, R.V.; Strang, G. 1986a: Optimal design and relaxation of variational problems.Comm. Pure Appl. Math. 39, 1–25 (Part I), 139–182 (Part II), and 353–377 (Part III)

    Google Scholar 

  • Kohn, R.V.; Strang, G. 1986b: Optimal design in elasticity and plasticity.Int. J. Numer. Meth. Eng. 22, 183–188

    Google Scholar 

  • Lurie, K.A.; Fedorov, A.V.; Cherkaev, A.V. 1982: Regularization of optimal design problems for bars and plates. Parts I and II.J. Optim. Theory Appl. 37, 499–521, 523–543

    Google Scholar 

  • Olhoff, N.; Lurie, K.A.; Cherkaev, A.V.; Fedorov, A.V. 1981: Sliding regimes and anisotropy in optimal design of vibrating axisymmetric plates.Int. J. Solids Struct. 17, 931–948

    Google Scholar 

  • Olhoff, N.; Taylor, J.E. 1983: On structural optimization.J. Appl. Mech. 50, 1134–1151

    Google Scholar 

  • Pedersen, P. 1989a: On optimal orientation of orthotropic materials.Struct. Optim. 1, 101–106

    Google Scholar 

  • Pedersen, P. 1989b: Bounds on elastic energy in solids of orthotropic materials.DCAMM Report No.392, Techn. Univ. of Denamrk, DK-2800 Lyngby

    Google Scholar 

  • Rossow, M.P.; Taylor, J.E. 1973: A finite element method for the optimal design of variable thickness sheets.AIAA J. 11, 1566–1569

    Google Scholar 

  • Rozvany, G.I.N. 1984: Structural layout theory - the present state of knowledge. In: Atrek, E.; Gallagher, R.H.; Ragsdell, K.M.; Zienkiewicz, O.C. (eds.)Directions in optimum structural design, Chapter 7. Chichester: Wiley & Sons

    Google Scholar 

  • Rozvany, G.I.N.; Ong, T.G.; Szeto, W.T.; Olhoff, N.; Bendsøe, M.P. 1987: Least-weight design of perforated plates.Int. J. Solids and Struct. 23, 521–536 (Part I), 537–550 (Part II)

    Google Scholar 

  • Rozvany, G.I.N. 1989: Optimality criteria for continuous and segment-wise linear distribution of the cross-sectional parameters. In: Eschenauer, H.A.; Thierauf, G. (eds.)Discretization methods and structural optimization - procedures and applications, pp. 291–298. Berlin, Heidelberg, New York: Springer

    Google Scholar 

  • Sanchez-Palencia, E. 1980: Non-homogeneous media and vibration theory.Lecture Notes in Physics 127, Berlin, Heidelberg, New York: Springer

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bendsøe, M.P. Optimal shape design as a material distribution problem. Structural Optimization 1, 193–202 (1989). https://doi.org/10.1007/BF01650949

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01650949

Keywords

Navigation