[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A genetic algorithm for flexible molecular overlay and pharmacophore elucidation

  • Research Papers
  • Published:
Journal of Computer-Aided Molecular Design Aims and scope Submit manuscript

Summary

A genetic algorithm (GA) has been developed for the superimposition of sets of flexible molecules. Molecules are represented by a chromosome that encodes angles of rotation about flexible bonds and mappings between hydrogen-bond donor proton, acceptor lone pair and ring centre features in pairs of molecules. The molecule with the smallest number of features in the data set is used as a template, onto which the remaining molecules are fitted with the objective of maximising structural equivalences. The fitness function of the GA is a weighted combination of: (i) the number and the similarity of the features that have been overlaid in this way; (ii) the volume integral of the overlay; and (iii) the van der Waals energy of the molecular conformations defined by the torsion angles encoded in the chromosomes. The algorithm has been applied to a number of pharmacophore elucidation problems, i.e., angiotensin II receptor antagonists, Leu-enkephalin and a hybrid morphine molecule, 5-HT1D agonists, benzodiazepine receptor ligands, 5-HT3 antagonists, dopamine D2 antagonists, dopamine reuptake blockers and FKBP12 ligands. The resulting pharmacophores are generated rapidly and are in good agreement with those derived from alternative means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greer, J., Erickson, J.W., Baldwin, J.J. and Varney, M.D., J. Med. Chem., 37 (1994) 1035.

    Google Scholar 

  2. Marshall, G.R., Barry, C.D., Bosshard, H.E., Dammkoehler, R.A. and Dunn, D.A., In Olson, E.C. and Christofferson, R.E. (Eds.) Computer Assisted Drug Design, American Chemical Society Symposium Series, Vol. 112, American Chemical Society, Washington, DC, 1979, pp. 205–226.

    Google Scholar 

  3. Klebe, G., In Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993, pp. 173–199.

    Google Scholar 

  4. Payne, A.W.R. and Glen, R.C., J. Mol. Graphics, 11 (1993) 74.

    Google Scholar 

  5. Goldberg, D.E., Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Wokingham, 1989.

    Google Scholar 

  6. Davis, L. (Ed.) Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, NY, 1991.

    Google Scholar 

  7. Forrest, S., Science, 261 (1993) 872.

    Google Scholar 

  8. Jones, G., Willett, P. and Glen, R.C., J. Mol. Biol., 245 (1995) 43.

    Google Scholar 

  9. SYBYL molecular modelling software, available from Tripos Associates Inc., St. Louis, MO.

  10. Zamora, A., J. Chem. Inf. Comput. Sci., 16 (1976) 40.

    Google Scholar 

  11. Digby, P.G.N. and Kempton, R.A., Multivariate Analysis of Ecological Communities, Chapman and Hall, London, 1987, pp. 112–115.

    Google Scholar 

  12. Hirschfelder, J.O., Curtiss, C.E. and Bird, R.B., Molecular Theory of Gases and Liquids, Wiley, New York, NY, 1964.

    Google Scholar 

  13. Clark, M., Cramer III, R.D. and Van Opdenbosch, N., J. Comput. Chem., 10 (1989) 982.

    Google Scholar 

  14. Brown, R.D., Jones, G., Willett, P. and Glen, R.C., J. Chem. Inf. Comput. Sci., 34 (1994) 63.

    Google Scholar 

  15. Starkweather, T., Whitley, D. and Mathias, K., In Schwefel, H.P. and Manner, R. (Eds.) Parallel Problem Solving From Nature, Springer, Berlin, 1990, pp. 176–185.

    Google Scholar 

  16. Tanese, R., In Schaffer, D. (Ed.) Proceedings of the Third International Conference on Genetic Algorithms and their Applications, Morgan Kaufmann, San Mateo, CA, 1989, pp. 434–439.

    Google Scholar 

  17. Jones, G., Ph.D. Thesis, University of Sheffield, Western Bank, 1995.

  18. Bradbury, R.H., Allott, C.P., Dennis, M., Fisher, E., Major, J.S., Masek, B.B., Oldham, A.A., Pearce, R.J., Rankine, N., Revill, J.M., Roberts, D.A. and Russell, S.T., J. Med. Chem., 35 (1992) 4227.

    Google Scholar 

  19. Masek, B.B., Merchant, A. and Matthew, J.B., J. Med. Chem., 36 (1993) 1230.

    Google Scholar 

  20. Kolb, V.M., Prog. Drug Res., 36 (1991) 49.

    Google Scholar 

  21. Glen, R.C., Hill, A.P., Martin, G.R. and Robertson, A.D., Headache, 34 (1994) 307.

    Google Scholar 

  22. Codding, P.W. and Muir, A.K.S., Mol. Pharmacol., 28 (1985) 178.

    Google Scholar 

  23. Clark, R.D., Miller, A.B., Berger, J., Repke, D.B., Weinhardt, K.K., Kowalczyk, B.A., Eglen, R.M., Bonhaus, D.W., Lee, C., Michel, A.D., Smith, W.L. and Wong, E.H.F., J. Med. Chem., 36 (1993) 2645.

    Google Scholar 

  24. Bradley, G., Ward, T.J., White, J.C., Coleman, J., Taylor, A. and Rhodes, K.F., J. Med. Chem., 25 (1992) 1515.

    Google Scholar 

  25. Höberg, T. and Norinder, U., In Krogsgaard-Larsen, P. and Bundgaard, H. (Eds.) A Textbook of Drug Design and Development, Harwood Academic Publishers, Reading, 1992, pp. 55–91.

    Google Scholar 

  26. Froimowitz, M., J. Comput. Chem., 14 (1993) 934.

    Google Scholar 

  27. Perkins, T.D.J. and Dean, P.M., J. Comput.-Aided Mol. Design, 7 (1993) 155.

    Google Scholar 

  28. Van Duyne, G.D., Standaert, R.F., Karplus, P.A., Schreiber, S.L. and Clardy, J., J. Mol. Biol., 229 (1993) 105.

    Google Scholar 

  29. Bernstein, F.C., Koetzle, T.F., Williams, G.J.B., Meyer, F., Bryce, M.D., Rodgers, J.R., Kennard, O., Shimanouchi, T. and Tasumi, M., J. Mol. Biol., 112 (1977) 535.

    Google Scholar 

  30. Holt, D.A., Luengo, J.I., Yamashita, D.S., Oh, H., Konialian, A.L., Yen, H., Rozamus, L.W., Brandt, M., Bossard, M.J., Levy, M.A., Eggleston, D.S., Liang, J., Schultz, L.W., Stout, T.J. and Clardy, J., J. Am. Chem. Soc., 115 (1993) 9925.

    Google Scholar 

  31. Sanderson, P.N., Glen, R.C., Payne, A.W.R., Hudson, B.D., Heide, C., Tranter, G.E., Doyle, P.M. and Harris, C.J., Int. J. Pept. Protein Res., 43 (1994) 588.

    Google Scholar 

  32. Kubinyi, H. (Ed.) 3D QSAR in Drug Design: Theory, Methods and Applications, ESCOM, Leiden, 1993.

    Google Scholar 

  33. Calder, J.A., Wyatt, J.A., Frenkel, D.A. and Casida, J.E., J. Comput.-Aided Mol. Design, 7 (1993) 45.

    Google Scholar 

  34. Dean, P.M. (Ed.) Molecular Similarity in Drug Design, Blackie, Glasgow, 1994.

    Google Scholar 

  35. Downs, G.M. and Willett, P., Rev. Comput. Chem., in press.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jones, G., Willett, P. & Glen, R.C. A genetic algorithm for flexible molecular overlay and pharmacophore elucidation. J Computer-Aided Mol Des 9, 532–549 (1995). https://doi.org/10.1007/BF00124324

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00124324

Keywords

Navigation