[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Optimization of formation for multi-agent systems based on LQR

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

In this paper, three optimal linear formation control algorithms are proposed for first-order linear multiagent systems from a linear quadratic regulator (LQR) perspective with cost functions consisting of both interaction energy cost and individual energy cost, because both the collective object (such as formation or consensus) and the individual goal of each agent are very important for the overall system. First, we propose the optimal formation algorithm for first-order multi-agent systems without initial physical couplings. The optimal control parameter matrix of the algorithm is the solution to an algebraic Riccati equation (ARE). It is shown that the matrix is the sum of a Laplacian matrix and a positive definite diagonal matrix. Next, for physically interconnected multi-agent systems, the optimal formation algorithm is presented, and the corresponding parameter matrix is given from the solution to a group of quadratic equations with one unknown. Finally, if the communication topology between agents is fixed, the local feedback gain is obtained from the solution to a quadratic equation with one unknown. The equation is derived from the derivative of the cost function with respect to the local feedback gain. Numerical examples are provided to validate the effectiveness of the proposed approaches and to illustrate the geometrical performances of multi-agent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alefeld, G., Schneider, N., 1982. On square roots of Mmatrices. Linear Algebra Appl., 42:119–119. http://dx.doi.org/10.1016/0024-3795(82)90143-4

    Article  MathSciNet  Google Scholar 

  • Altafini, C., 2013. Consensus problems on networks with antagonistic interactions. IEEE Trans. Autom. Contr., 58(4):935–946. http://dx.doi.org/10.1109/TAC.2012.2224251

    Article  MathSciNet  Google Scholar 

  • Anderson, B.D.O., Moore, J.B., 2007. Optimal Control: Linear Quadratic Methods. Dover Publications, USA.

    Google Scholar 

  • Basiri, M., Bishop, A.N., Jensfelt, P., 2010. Distributed control of triangular formations with angle-only constraints. Syst. Contr. Lett., 59(2):147–154. http://dx.doi.org/10.1016/j.sysconle.2009.12.010

    Article  MathSciNet  Google Scholar 

  • Bishop, A.N., 2011. A very relaxed control law for bearingonly triangular formation control. Proc. 18th IFAC World Congress, p.5991–5998.

    Google Scholar 

  • Borrelli, F., Keviczky, T., 2008. Distributed LQR design for identical dynamically decoupled systems. IEEE Trans. Autom. Contr., 53(8):1901–1912. http://dx.doi.org/10.1109/TAC.2008.925826

    Article  MathSciNet  Google Scholar 

  • Cao, Y., Ren, W., 2010. Optimal linear-consensus algorithms: an LQR perspective. IEEE Trans. Syst. Man Cybern. Part B, 40(3):819–830. http://dx.doi.org/10.1109/TSMCB.2009.2030495

    Article  Google Scholar 

  • Dimarogonas, D.V., Johansson, K.H., 2010. Stability analysis for multi-agent systems using the incidence matrix: quantized communication and formation control. Automatica, 46(4):695–700. http://dx.doi.org/10.1016/j.automatica.2010.01.012

    Article  MathSciNet  Google Scholar 

  • Ghadami, R., Shafai, B., 2013. Decomposition-based distributed control for continuous-time multi-agent systems. IEEE Trans. Autom. Contr., 58(1):258–264. http://dx.doi.org/10.1109/TAC.2012.2204153

    Article  MathSciNet  Google Scholar 

  • Ghadami, R., Shafai, B., 2014. Distributed observer-based LQR design for multi-agent systems. World Automation Congress, p.520–525. http://dx.doi.org/10.1109/WAC.2014.6936025

    Google Scholar 

  • Godsil, C., Royle, G.F., 2013. Algebraic Graph Theory. Springer, USA.

    MATH  Google Scholar 

  • Guo, J., Lin, Z., Cao, M., et al., 2010. Adaptive control schemes for mobile robot formations with triangularised structures. IET Contr. Theory Appl., 4(9):1817–1827. http://dx.doi.org/10.1049/iet-cta.2009.0513

    Article  Google Scholar 

  • Horn, R.A., Johnson, C.R., 1985. Matrix Analysis. Cambridge University Press, USA.

    Book  Google Scholar 

  • Horn, R.A., Johnson, C.R., 1991. Topics in Matrix Analysis. Cambridge University Press, USA.

    Book  Google Scholar 

  • Huang, H., Yu, C., Wu, Q., 2010. Distributed LQR design for multi-agent formations. Proc. 49th IEEE Conf. on Decision and Control, p.4535–4540. http://dx.doi.org/10.1109/CDC.2010.5716988

    Google Scholar 

  • Li, Z., Duan, Z., Lewis, F.L., 2014. Distributed robust consensus control of multi-agent systems with heterogeneous matching uncertainties. Automatica, 50(3):883–889. http://dx.doi.org/10.1016/j.automatica.2013.12.008

    Article  MathSciNet  Google Scholar 

  • Liu, T., Jiang, Z., 2014. Distributed nonlinear control of mobile autonomous multi-agents. Automatica, 50(4):1075–1086. http://dx.doi.org/10.1016/j.automatica.2014.02.023

    Article  MathSciNet  Google Scholar 

  • Movric, K.H., Lewis, F.L., 2014. Cooperative optimal control for multi-agent systems on directed graph topologies. IEEE Trans. Autom. Contr., 59(3):769–774. http://dx.doi.org/10.1109/TAC.2013.2275670

    Article  MathSciNet  Google Scholar 

  • Oh, K.K., Park, M.C., Ahn, H.S., 2015. A survey of multiagent formation control. Automatica., 53(3):424–440. http://dx.doi.org/10.1016/j.automatica.2014.10.022

    Article  MathSciNet  Google Scholar 

  • Qin, J., Gao, H., 2012. A sufficient condition for convergence of sampled-data consensus for double-integrator dynamics with nonuniform and time-varying communication delays. IEEE Trans. Autom. Contr., 57(9):2417–2422. http://dx.doi.org/10.1109/TAC.2012.2188425

    Article  MathSciNet  Google Scholar 

  • Qin, J., Gao, H., Zheng, W.X., 2011. Second-order consensus for multi-agent systems with switching topology and communication delay. Syst. Contr. Lett., 60(6):390–397. http://dx.doi.org/10.1016/j.sysconle.2011.03.004

    Article  MathSciNet  Google Scholar 

  • Ren, W., Beard, R.W., Atkins, E.M., 2007. Information consensus in multivehicle cooperative control. IEEE Contr. Syst. Mag., 27(2):71–82. http://dx.doi.org/10.1109/MCS.2007.338264

    Article  Google Scholar 

  • Shi, G., Sou, K.C., Sandberg, H., et al., 2014. A graphtheoretic approach on optimizing informed-node selection in multi-agent tracking control. Phys. D, 267:104–104. http://dx.doi.org/10.1016/j.physd.2013.07.014

    Article  MathSciNet  Google Scholar 

  • Xiao, F., Wang, L., Chen, J., et al., 2009. Finite-time formation control for multi-agent systems. Automatica, 45(11):2605–2611. http://dx.doi.org/10.1016/j.automatica.2009.07.012

    Article  MathSciNet  Google Scholar 

  • Yu, C., Hendrickx, J.M., Fidan, B., et al., 2007. Three and higher dimensional autonomous formations: rigidity, persistence and structural persistence. Automatica, 43(3):387–402. http://dx.doi.org/10.1016/j.automatica.2006.08.025

    Article  MathSciNet  Google Scholar 

  • Yu, C., Anderson, B.D.O., Dasgupta, S., et al., 2009. Control of minimally persistent formations in the plane. SIAM J. Contr. Optim., 48(1):206–233. http://dx.doi.org/10.1137/060678592

    Article  MathSciNet  Google Scholar 

  • Zhang, H., Lewis, F.L., Das, A., 2011. Optimal design for synchronization of cooperative systems: state feedback, observer and output feedback. IEEE Trans. Autom. Contr., 56(8):1948–1952. http://dx.doi.org/10.1109/TAC.2011.2139510

    Article  MathSciNet  Google Scholar 

  • Zhao, S., Lin, F., Peng, K., et al., 2014. Distributed control of angle-constrained cyclic formations using bearing-only measurements. Syst. Contr. Lett., 63:12–12. http://dx.doi.org/10.1016/j.sysconle.2013.10.003

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin-qiu Wang.

Additional information

Project supported by the National Natural Science Foundation of China (No. 61375072) (50%) and the Natural Science Foundation of Zhejiang Province, China (No. LQ16F030005) (50%)

ORCID: Yin-qiu WANG, http://orcid.org/0000-0002-1410-9619

Dr. Chang-bin YU, first author of this invited paper, received his Bachelor degree in Computer Engineering from Nanyang Technological Unviersity, Singapore, in 2004, and PhD degree in Engineering from the Australian National University, Australia, in 2008. Since then, he has been an academic staff with the Australian National University and subsequently held various appointments with Hangzhou Dianzi University (China), National ICT Australia (Australia), etc. His current research interests include control of autonomous formations, multiagent systems, mobile sensor networks, human-robot interation, and graph theory. He is Associate Editor of International Journal of Robust and Nonlinear Control.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Cb., Wang, Yq. & Shao, Jl. Optimization of formation for multi-agent systems based on LQR. Frontiers Inf Technol Electronic Eng 17, 96–109 (2016). https://doi.org/10.1631/FITEE.1500490

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1500490

Keywords

CLC number

Navigation