Abstract
The paper deals with the existence of a Kneser solution of the n-th order nonlinear differential inclusion
where a ∈ (0,∞), and Ai: [a,∞) × ℝn → ℝ, i = 1,..., n, are upper-Carathéodory mappings. The derived result is finally illustrated by the third order Kneser problem.
Similar content being viewed by others
References
R. P. Agarwal, D. O’Regan: Infinite Interval Problems for Differential, Difference and Integral Equations. Kluwer Academic Publishers, Dordrecht, 2001.
J. Andres, G. Gabor, L. Górniewicz: Topological structure of solution sets to multivalued asymptotic problems, Z. Anal. Anwend. 19 (2000), 35–60.
J. Andres, G. Gabor, L. Górniewicz: Acyclicity of solution sets to functional inclusions, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods. 49 (2002), 671–688.
J. Andres, L. Górniewicz: Topological Fixed Point Principles for Boundary Value Problems. Topological Fixed Point Theory and Its Applications 1, Kluwer Academic Publishers, Dordrecht, 2003.
J. Andres, M. Pavlačková: Asymptotic boundary value problems for second-order differential systems, Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods. 71 (2009), 1462–1473.
J. Andres, M. Pavlačková: Boundary value problems on noncompact intervals for the n-th order vector differential inclusions, Electron. J. Qual. Theory Differ. Equ. 2016 (2016), 19 pages.
J. Appell, E. De Pascale, N. H. Thái, P. P. Zabreˇıko: Multi-valued superpositions, Diss. Math. 345 (1995), 97 pages.
J.-P. Aubin, A. Cellina: Differential Inclusions. Set-Valued Maps and Viability Theory. Grundlehren der Mathematischen Wissenschaften 264, Springer, Berlin, 1984.
M. Bartušek, M. Cecchi, M. Marini: On Kneser solutions of nonlinear third order differential equations, J. Math. Anal. Appl. 261 (2001), 72–84.
M. Bartušek, Z. Došlá: Oscillation of third order differential equation with damping term, Czech. Math. J. 65 (2015), 301–316.
K. Borsuk: Theory of Retracts. Monografie Matematyczne 44, PWN, Warszawa, 1967.
M. Cecchi, M. Furi, M. Marini: About the solvability of ordinary differential equations with asymptotic boundary conditions, Boll. Unione Mat. Ital., VI. Ser., C, Anal. Funz. Appl. 4 (1985), 329–345.
E. Fermi: Un metodo statistico per la determinazione di alcune prioriet á dell’atomo, Rend. R. Accad. Nat. Lincei. 6 (1927), 602–607. (In Italian.)
A. F. Filippov: Differential Equations with Discontinuous Right-Hand Sides. Mathematics and Its Applications (Soviet Series) 18, Kluwer Academic Publishers, Dordrecht, 1988.
G. Gabor: On the acyclicity of fixed point sets of multivalued maps, Topol. Methods Nonlinear Anal. 14 (1999), 327–343.
L. Górniewicz: Topological Fixed Point Theory of Multivalued Mappings. Mathematics and Its Applications 495, Kluwer Academic Publishers, Dordrecht, 1999.
J. R. Graef, J. Henderson, A. Ouahab: Impulsive Differential Inclusions. A Fixed Point Approach. De Gruyter Series in Nonlinear Analysis and Applications 20, De Gruyter, Berlin, 2013.
P. Hartman, A. Wintner: On the non-increasing solutions of y′′ = f(x, y, y′), Am. J. Math. 73 (1951), 390–404.
L. V. Kantorovich, G. P. Akilov: Functional Analysis in Normed Spaces. International Series of Monographs in Pure and Applied Mathematics 46, Pergamon Press, Oxford, 1964.
I. T. Kiguradze, T. A. Chanturia: Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations. Mathematics and Its Applications (Soviet Series) 89, Kluwer Academic Publishers, Dordrecht, 1993.
I. T. Kiguradze, B. L. Shekhter: Singular boundary value problems for second-order ordinary differential equations, J. Soviet Math. 43 (1988), 2340–2417 (In English. Russian original.); translation from Itogi Nauki Tekh., Ser. Sovrem. Probl. Mat. 30 (1987), 105–201.
A. Kneser: Untersuchung und asymptotische Darstellung der Integrale gewisser Differentialgleichungen bei grossen reellen Werten des Arguments I, II, J. für Math. 116 (1896), 178–212; 117 (1896), 72–103. (In German.) zbl
V. A. Kozlov: On Kneser solutions of higher order nonlinear ordinary differential equations, Ark. Mat. 37 (1999), 305–322.
J. Kurzweil: Ordinary Differential Equations. Introduction to the Theory of Ordinary Differential Equations in the Real Domain. Studies in Applied Mechanics 13, Elsevier Scientific Publishing, Amsterdam; SNTL Publishers of Technical Literature, Praha, 1986.
D. O’Regan, A. Petruşel: Leray-Schauder, Lefschetz and Krasnoselskii fixed point theory in Fréchet spaces for general classes of Volterra operators, Fixed Point Theory. 9 (2008), 497–513.
S. Padhi, S. Pati: Theory of Third-Order Differential Equations. Springer, New Delhi, 2014.
N. Partsvania, Z. Sokhadze: Oscillatory and monotone solutions of first-order nonlinear delay differential equations, Georgian Math. J. 23 (2016), 269–277.
L. H. Thomas: The calculation of atomic fields, Proceedings Cambridge. 23 (1927), 542–548. zbl doi
I. I. Vrabie: Compactness Methods for Nonlinear Evolutions. Pitman Monographs and Surveys in Pure and Applied Mathematics 75, Longman Scientific &Technical, Harlow; John Wiley & Sons, New York, 1995.
Author information
Authors and Affiliations
Corresponding author
Additional information
The research has been supported by the grant No. 14-06958S “Singularities and impulses in boundary value problems for nonlinear ordinary differential equations” of the Grant Agency of the Czech Republic.
Rights and permissions
About this article
Cite this article
Pavlačková, M. On Kneser Solutions of the n-th Order Nonlinear Differential Inclusions. Czech Math J 69, 99–116 (2019). https://doi.org/10.21136/CMJ.2018.0191-17
Received:
Published:
Issue Date:
DOI: https://doi.org/10.21136/CMJ.2018.0191-17