[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Secrecy outage performance for wireless-powered relaying systems with nonlinear energy harvesters

  • Published:
Frontiers of Information Technology & Electronic Engineering Aims and scope Submit manuscript

Abstract

We consider a cooperative system consisting of a source node, a destination node, N (N >1) wireless-powered relays, and an eavesdropper. Each relay is assumed to be with a nonlinear energy harvester, in which there exists a saturation threshold, limiting the level of the harvested power. For decode-and-forward and power splitting protocols, the Kth best relay is selected to assist the source-relay-destination transmission. An analytical expression for the secrecy outage probability is derived, and also verified by simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Boshkovska, E., Ng, D.W.K., Zlatanov, N., et al., 2015. Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Commun. Lett., 19(12):2082–2085. http://dx.doi.org/10.1109/LCOMM.2015.2478460

    Article  Google Scholar 

  • Chen, Y., 2016. Energy harvesting AF relaying in the presence of interference and Nakagami-m fading. IEEE Trans. Wirel. Commun., 15(2):1008–1017. http://dx.doi.org/10.1109/TWC.2015.2481393

    Article  Google Scholar 

  • Ding, Z., Krikidis, I., Sharif, B., et al., 2014a. Wireless information and power transfer in cooperative networks with spatially random relays. IEEE Trans. Wirel. Commun., 13(8):4440–4453. http://dx.doi.org/10.1109/TWC.2014.2314114

    Article  Google Scholar 

  • Ding, Z., Perlaza, S.M., Esnaola, I., et al., 2014b. Power allocation strategies in energy harvesting wireless cooperative networks. IEEE Trans. Wirel. Commun., 13(2):846–860. http://dx.doi.org/10.1109/TWC.2013.010213.130484

    Article  Google Scholar 

  • Ding, Z., Zhong, C., Ng, D.W.K., et al., 2015. Application of smart antenna technologies in simultaneous wireless information and power transfer. IEEE Commun. Mag., 53(4):86–93. http://dx.doi.org/10.1109/MCOM.2015.7081080

    Article  Google Scholar 

  • Dong, Y., Hossain, M.J., Cheng, J., 2016. Performance of wireless powered amplify and forward relaying over Nakagami-m fading channels with nonlinear energy harvester. IEEE Commun. Lett., 20(4):672–675. http://dx.doi.org/10.1109/LCOMM.2016.2528260

    Article  Google Scholar 

  • Gradshteyn, I.S., Ryzhik, I.M., 2007. Table of Integrals, Series, and Products (7th Ed.). Academic Press, USA.

    MATH  Google Scholar 

  • Gu, Y., Aïssa, S., 2015. RF-based energy harvesting in decode-and-forward relaying systems: ergodic and outage capacities. IEEE Trans. Wirel. Commun., 14(11):6425–6434. http://dx.doi.org/10.1109/TWC.2015.2453418

    Article  Google Scholar 

  • Krikidis, I., Timotheou, S., Nikolaou, S., et al., 2014. Simultaneous wireless information and power transfer in modern communication systems. IEEE Commun. Mag., 52(11):104–110. http://dx.doi.org/10.1109/MCOM.2014.6957150

    Article  Google Scholar 

  • Mo, J., Tao, M., Liu, Y., 2012. Relay placement for physical layer security: a secure connection perspective. IEEE Commun. Lett., 16(6):878–881. http://dx.doi.org/10.1109/LCOMM.2012.042312.120582

    Article  Google Scholar 

  • Ng, D.W.K., Lo, E.S., Schober, R., 2014. Robust beamforming for secure communication in systems with wireless information and power transfer. IEEE Trans. Wirel. Commun., 13(8):4599–4615. http://dx.doi.org/10.1109/TWC.2014.2314654

    Article  Google Scholar 

  • Pan, G., Tang, C., Li, T., et al., 2015. Secrecy performance analysis for SIMO simultaneous wireless information and power transfer systems. IEEE Trans. Commun., 63(9):3423–3433. http://dx.doi.org/10.1109/TCOMM.2015.2458317

    Article  Google Scholar 

  • Proakis, J.G., 2000. Digital Communications (4th Ed.). McGraw-Hill, USA.

    MATH  Google Scholar 

  • Wang, H.M., Xia, X.G., 2015. Enhancing wireless secrecy via cooperation: signal design and optimization. IEEE Commun. Mag., 53(12):47–53. http://dx.doi.org/10.1109/MCOM.2015.7355565

    Article  Google Scholar 

  • Zhang, J.L., Pan, G.F., Wang, H.M., 2016. On physicallayer security in underlay cognitive radio networks with full-duplex wireless-powered secondary system. IEEE Access, 4:3887–3893. http://dx.doi.org/10.1109/ACCESS.2016.2591782

    Article  Google Scholar 

  • Zhou, Y., Pan, G., Li, T., et al., 2015. Secrecy outage performance for partial relay selection schemes in cooperative systems. IET Commun., 9(16):1980–1987. http://dx.doi.org/10.1049/iet-com.2015.0109

    Article  Google Scholar 

  • Zou, Y., Wang, X., Shen, W., 2013. Optimal relay selection for physical-layer security in cooperative wireless networks. IEEE J. Sel. Areas Commun., 31(10):2099–2111. http://dx.doi.org/10.1109/JSAC.2013.131011

    Article  Google Scholar 

  • Zou, Y., Champagne, B., Zhu, W.P., et al., 2015a. Relayselection improves the security-reliability trade-off in cognitive radio systems. IEEE Trans. Commun., 63(1):215–228. http://dx.doi.org/10.1109/TCOMM.2014.2377239

    Article  Google Scholar 

  • Zou, Y., Zhu, J., Wang, X., et al., 2015b. Improving physicallayer security in wireless communications using diversity techniques. IEEE Netw., 29(1):42–48. http://dx.doi.org/10.1109/MNET.2015.7018202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gao-feng Pan.

Additional information

Project supported by the National High-Tech R&D Program (863) of China (No. 2015AA016304), the National Natural Science Foundation of China (Nos. 61401372 and 61531016), the Research Fund for the Doctoral Program of Higher Education of China (No. 20130182120017), the Natural Science Foundation of CQ CSTC (Nos. cstc2013jcyjA40040 and cstc2016jcyjA2002), the Postdoctoral Science Foundation of China (No. 2016M590875), and the Fundamental Research Funds for the Central Universities, China (Nos. XDJK2014A017, XDJK2015B023, and XDJK2016A011)

ORCID: Gao-feng PAN, http://orcid.org/0000-0003-1008-5717

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Jl., Pan, Gf. & Xie, Yy. Secrecy outage performance for wireless-powered relaying systems with nonlinear energy harvesters. Frontiers Inf Technol Electronic Eng 18, 246–252 (2017). https://doi.org/10.1631/FITEE.1601352

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1631/FITEE.1601352

Keywords

CLC number

Navigation