[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advertisement

Experimental study of concrete creep under thermal-mechanical-hydric conditions

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

In this paper, the creep deformations of two representative concrete materials are investigated under thermal-mechanical-hydric conditions. Both basic and drying creeps are considered. Triaxial compression creep tests are first performed under a confining pressure of 5 MPa and three different values of temperature (T = 20 °C, 50 °C or 80 °C). Two different levels of differential stress are considered (50% and 80% of the peak strength at 20 °C). These tests are used for the characterization of basic creep. Then hydric creep tests are conducted on samples subjected to uniaxial compression condition with different prescribed values of axial stress (30%, 50% and 70% of the uniaxial compressive strength) and at constant temperature (20 °C). The samples are progressively dried by decreasing the relative humidity (RH) from 98 to 50%. The relative variations of sample mass are also measured during the drying process. It is found that the basic creep strain rate is enhanced by temperature and differential stress. The drying kinetics is strongly influenced by the compositions of concrete. The drying creep deformation is directly correlated with the mass loss kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Andra (2012) Referentiel Materiaux 2012 CG.RP.ASCM.12.0014

  2. Brue F, Davy CA, Skoczylas F, Burlion N, Bourbon X (2012) Effect of temperature on the water retention properties of two high performance concretes. Cem Concr Res 42:384–396

    Article  Google Scholar 

  3. Kovler K (1995) Interdependence of creep and shrinkage for concrete under tension. J Mater Civil Eng 7:96–101

    Article  Google Scholar 

  4. Smadi MM, Slate FO, Nilson AH (1987) Shrinkage and creep of high-medium and lowstrength concretes, including overloads. ACI Mater J 84:224–234

    Google Scholar 

  5. Shen D, Jiang J, Wang W, Shen J, Jiang G (2017) Tensile creep and cracking resistance of concrete with different water-to-cement ratios at early age. Constr Build Mater 146:410–418

    Article  Google Scholar 

  6. Bazant ZP, Hemann JH, Koller H, Najjar LA (1973) Thin-wall cement paste cylinder for creep test at variable humidity or temperature. Mater Struct 6:1–34

    Google Scholar 

  7. Bazant ZP, Asghari AA, Scamiot J (1976) Experimental study of creep of hardened Portland cement paste at variable water content. Mater Struct 9:279–290

    Google Scholar 

  8. Philajavaara SE (1974) A review of some of the main results of a research on the aging phenomena of concrete: effect of moisture conditions on strength, Shrinkage and creep of mature concrete. Cem Concr Res 4:761–771

    Article  Google Scholar 

  9. He ZH, Qian CX (2011) Internal relative humidity and creep of concrete with modified admixtures. Prog Nat Sci Mater Int 21:426–432

    Article  Google Scholar 

  10. Frech-Baronet J, Sorelli L, Charron JP (2017) New evidences on the effect of the internal relative humidity on the creep and relaxation behaviour of a cement paste by micro-indentation techniques. Cem Concr Res 91:39–51

    Article  Google Scholar 

  11. Nastic M, Bentz EC, Kwon OS, Papanikolaou V, Tcherner J (2019) Shrinkage and creep strains of concrete exposed to low relative humidity and high temperature environments. Nucl Eng Des 352:110154

    Article  Google Scholar 

  12. Benboudjema F (2002) Modelisation des deformations differees du beton sous sollicitations biaxiales. Application aux enceintes de confinement de batiments reacteurs des centrales nucleaires. Doctoral thesis, Universite de Marne la Vallee. 2002, p 258

  13. Khatri RP, Sirivivatnanon V (1995) Effect of different supplementary cementitious materials on mechanical properties of high-performance concrete. Cem Concr Res 25:209–220

    Article  Google Scholar 

  14. Jianyong L, Yan Y (2001) A study on creep and drying shrinkage of high-performance concrete. Cem Concr Res 31:1203–1206

    Article  Google Scholar 

  15. Pane I, Hansen W (2002) Early age creep and stress relaxation of concrete containing blended cements. Mater Struct 35:92–96

    Article  Google Scholar 

  16. Klausen AE, Kanstad T, Bjontegaard O, Sellevold E (2017) Comparison of tensile and compressive creep of fly ash concretes in the hardening phase. Cem Concr Res 95:188–194

    Article  Google Scholar 

  17. Gayarre FL, Gonzalez JS, Perez CLC, Serrano Lopez MA, Ros PS, Martinez-Barrera G (2019) Shrinkage and creep in structural concrete with recycled brick aggregates. Constr Build Mater 228:116750

  18. Mohammadhosseini H, Alyousef R, Lim NHAS, Tahir MM, Alabduljabbar H, Mohamed AM (2020) Creep and drying shrinkage performance of concrete composite comprising waste polypropylene carpet fibres and palm oil fuel ash. J Build Eng 30:101250

    Article  Google Scholar 

  19. Ladaoui W, Vidal T, Sellier A (2011) Effect of a temperature change from 20 to 50 \(^{\circ }\)C on the basic creep of HPC and HPFFC. Mater Struct 44:1629–1639

    Article  Google Scholar 

  20. Ladaoui W, Vidal T, Sellier A, Bourbon X (2013) Analysis of interactions between damage and basic creep of HPC and HPFFC heated between 20 and 80 \(^{\circ }\)C. Mater Struct 46:13–23

    Article  Google Scholar 

  21. Pickett G (1942) The effect of change inmoisture-content of the creep of concrete under a sustained load. J Am Concr Inst 13:333–356

    Google Scholar 

  22. Wittmann FH, Roelfstra PE (1980) Total deformation of loaded drying concrete. Cem Concr Res 10:601–610

    Article  Google Scholar 

  23. Bazant ZP, Xi Y (1994) Drying creep of concrete: constitutive model and new experiments separating its mechanisms. Mater Struct 27:3–14

    Article  Google Scholar 

  24. Pihlajavaara SE (1974) A review of some of the main results of a research on the ageing phenomena of concrete: effect of moisture conditions on strength, shrinkage and creep of mature concrete. Cem Concr Res 4:761–771

    Article  Google Scholar 

  25. Bazant ZP, Chern JC (1985) Concrete creep at variable humidity: constitutive law and mechanism. Mater Struct 18:1–20

    Article  Google Scholar 

  26. L’Hermite R, Mamillan M (1969) Nouveaux resultats et recentes etudes sur le fluage du beton. Mater Struct 2:35–41

    Google Scholar 

  27. Bazant ZP (1975) Theory of creep and shrinkage in concrete structures: a precis of recent developments. Mech Today 2:1–93

    MATH  Google Scholar 

  28. Acker P, Ulm FJ (2001) Creep and shrinkage of concrete: physical origins and practical measurements. Nucl Eng Des 203:143–158

    Article  Google Scholar 

  29. Sellier A, Buffo-Lacarriere L, Multon S, Vidal T, Bourbon X (2012) Nonlinear basic creep and drying creep modelling. In: P. Rossi, J.L. Tailhan (Eds.) Strategy for sustainable concrete structures (SSCS Conference). Aix-en-Provence, France, May 29–June 1

  30. Bazant ZP (1978) Solidification theory for aging creep. Cem Concr Res 8:601–611

    Google Scholar 

  31. Burlion N, Bourgeois F, Shao JF (2005) Effects of drying on mechanical behaviour of concrete. Cem Concr Compos 27:367–379

    Article  Google Scholar 

  32. Benboudjema F, Meftah F, Torrenti JM (2005) Interaction between drying, shrinkage, creep and cracking phenomena in concrete. Eng Struct 27:239–250

    Article  Google Scholar 

  33. Yazdizadeh Z, Marzouk H, Hadianfard MA (2017) Monitoring of concrete shrinkage and creep using fiber Bragg grating sensors. Constr Build Mater 137:505–512

    Article  Google Scholar 

  34. Su L, Wang YF, Mei SQ, Li PF (2017) Experimental investigation on the fundamental behavior of concrete creep. Constr Build Mater 152:250–258

    Article  Google Scholar 

  35. Charpin L, Le Pape Y, Coustabeau É, Toppani É, Heinfling G, Le Bellego C, Masson B, Montalvo J, Courtois A, Sanahuja J, Reviron N (2018) A 12year EDF study of concrete creep under uniaxial and biaxial loading. Cem Concr Res 103:140–159

    Article  Google Scholar 

  36. Bazant ZP, Hemann JH, Koller H, Najjar LJ (1973) A thin-wall cement paste cylinder for creep tests at variable humidity or temperature. Mater Struct 6:227–281

    Google Scholar 

  37. Bazant ZP, Wu ST (1974) Creep and shrinkage law for concrete at variable humidity. J Eng Mech Div 100:1183–1209

    Article  Google Scholar 

  38. Torrenti JM, Granger L, Diruy M, Genin P (2011) Modélisation du retrait du béton en ambiance variable. Rev Fr Génie Civ 1(1):687–698

    Google Scholar 

  39. Bazant ZP (1972) Thermodynamics of hindered adsorption and its implications for hardened cement paste and concrete. Cem Concr Res 2:1–16

    Article  Google Scholar 

  40. Sellier A, Multon S, Buffo-Lacarriere L, Vidal T, Bourbon X, Camps G (2016) Concrete creep modelling for structural applications: non-linearity, multi-axiality, hydration, temperature and drying effects. Cem Concr Res 79:301–315

    Article  Google Scholar 

  41. Ladaoui W, Vidal T, Sellier A, Bourbon X (2013) Analysis of interactions between damage and basic creep of HPC and HPFRC heated between 20 and 80\(^{\circ }\)C. Mater Struct 46:13–23

    Article  Google Scholar 

  42. Vidal T, Sellier A, Ladaoui W, Bourbon X (2014) Effect of temperature on the basic creep of high-performance concretes heated between 20 and 80\(^{\circ }\)C. J Mater Civ Eng B4014002

  43. Aili A, Vandammea M, Torrenti JM, Masson B (2020) A viscoelastic poromechanical model for shrinkage and creep of concrete. Cem Concr Res 129:105970

    Article  Google Scholar 

  44. Bazant ZP, Hauggaaed AB, Baweja S, Ulm J (1997) Microprestress-solidification theory for concrete creep. I: aging and drying effects. J Eng Mech 123:1188–1194

    Google Scholar 

  45. Lassabatère T, Torrenti JM, Granger L (1997) Sur le couplage entre sechage du béton et contrainte appliquee. Actes du Colloque Saint-Venant, Paris, France, 331–338

  46. Neville AM (2000) Propriétés des bétons. Eyrolles, Paris

    Google Scholar 

  47. Rossi P, Tailhan JL, Maou FL, Gaillet L, Martin E (2012) Basic creep behavior of concretes investigation of the physical mechanisms by using acoustic emission. Cem Concr Res 42:61–73

    Article  Google Scholar 

  48. Bazant ZP, Sener S, Kim JK (1986) Effect of cracking on drying permeability and diffusivity of concrete. ACI Mater J 84:351–357

    Google Scholar 

  49. Acker FJ (2001) Ulm, creep and shrinkage of concrete: physical origins and practical measurements. Nucl Eng Des 203:143–158

    Article  Google Scholar 

  50. Sicard V, François R, Ringot E, Pons G (1992) Influence of creep and shrinkage on cracking in high strength concrete. Cem Concr Res 22:159–168

    Article  Google Scholar 

  51. Bisschop J, Van Mier JGM (2002) Effect of aggregates on drying shrinkage microcracking in cement-based composites. Mater Struct 35:453–461

    Article  Google Scholar 

  52. Ladaoui W (2010) Etude experimentale du comportement Thermo-Hydro-Mecanique a long terme des BHP destines aux ouvrages de stockage des dechets radioactifs, Doctoral thesis, University of Toulouse

Download references

Acknowledgements

This work was jointly funded by Andra (French National Agency for radioactive waste management, contract GLciment-545-0608), the National Natural Science Foundation of China (Grant: 51709097) and Hubei Provincial Natural Science Foundation of China (Grant: 2017CFB604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianfu Shao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Chen, W., Burlion, N. et al. Experimental study of concrete creep under thermal-mechanical-hydric conditions. Mater Struct 54, 49 (2021). https://doi.org/10.1617/s11527-021-01637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-021-01637-6

Keywords