[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

PyCAC: The concurrent atomistic-continuum simulation environment

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present a novel distributed-memory parallel implementation of the concurrent atomistic-continuum (CAC) method. Written mostly in Fortran 2008 and wrapped with a Python scripting interface, the CAC simulator in PyCAC runs in parallel using Message Passing Interface with a spatial decomposition algorithm. Built upon the underlying Fortran code, the Python interface provides a robust and versatile way for users to build system configurations, run CAC simulations, and analyze results. In this paper, following a brief introduction to the theoretical background of the CAC method, we discuss the serial algorithms of dynamic, quasistatic, and hybrid CAC, along with some programming techniques used in the code. We then illustrate the parallel algorithm, quantify the parallel scalability, and discuss some software specifications of PyCAC; more information can be found in the PyCAC user’s manual that is hosted on http://www.pycac.org.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

Notes

  1. Currently available resource on XSEDE is San Diego Supercomputer Center’s Comet cluster; integration with other XSEDE resources is planned for the future. Users desiring to run PyCAC (and other available materials informatics tools) for large-scale simulation/modeling projects should have their own compute/storage allocations on PACE or XSEDE and contact MATIN Project Lead (Aleksandr Blekh,) to discuss relevant integration and collaboration.

References

  1. F.F. Abraham, J.Q. Broughton, N. Bernstein, and E. Kaxiras: Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture. Europhys. Lett. 44, 783–787 (1998).

    Article  CAS  Google Scholar 

  2. D.L. McDowell: A perspective on trends in multiscale plasticity. Int. J. Plast. 26, 1280–1309 (2010).

    Article  CAS  Google Scholar 

  3. V. Bulatov, F.F. Abraham, L. Kubin, B. Devincre, and S. Yip: Connecting atomistic and mesoscale simulations of crystal plasticity. Nature 391, 669–672 (1998).

    Article  CAS  Google Scholar 

  4. D.E. Spearot and M.D. Sangid: Insights on slip transmission at grain boundaries from atomistic simulations. Curr. Opin. Solid State Mater. Sci. 18, 188–195 (2014).

    Article  CAS  Google Scholar 

  5. R. Phillips: Multiscale modeling in the mechanics of materials. Curr. Opin. Solid State Mater. Sci. 3, 526–532 (1998).

    Article  Google Scholar 

  6. E.B. Tadmor and R.E. Miller: Modeling Materials: Continuum, Atomistic and Multiscale Techniques (Cambridge University Press, New York, 2012).

    Google Scholar 

  7. L. Xiong, G. Tucker, D.L. McDowell, and Y. Chen: Coarse-grained atomistic simulation of dislocations. J. Mech. Phys. Solids, 59, 160–177 (2011).

    Article  CAS  Google Scholar 

  8. S. Xu, R. Che, L. Xiong, Y. Chen, and D.L. McDowell: A quasistatic implementation of the concurrent atomistic-continuum method for FCC crystals. Int. J. Plast. 72, 91–126 (2015).

    Article  CAS  Google Scholar 

  9. Y. Chen, J. Zimmerman, A. Krivtsov, and D.L. McDowell: Assessment of atomistic coarse-graining methods. Int. J. Eng. Sci. 49, 1337–1349 (2011).

    Article  CAS  Google Scholar 

  10. Y. Chen, J. Lee, and L. Xiong: A generalized continuum theory and its relation to micromorphic theory. J. Eng. Mech. 135, 149–155 (2009).

    Article  Google Scholar 

  11. S. Xu: The concurrent atomistic-continuum method: Advancements and applications in plasticity of face-centered cubic metals. Ph.D. thesis, Georgia Institute of Technology, 2016.

  12. J. Knap and M. Ortiz: An analysis of the quasicontinuum method. J. Mech. Phys. Solids 49, 1899–1923 (2001).

    Article  Google Scholar 

  13. B. Eidel and A. Stukowski: A variational formulation of the quasicontinuum method based on energy sampling in clusters. J. Mech. Phys. Solids 57, 87–108 (2009).

    Article  CAS  Google Scholar 

  14. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell: An analysis of key characteristics of the Frank–Read source process in FCC metals. J. Mech. Phys. Solids 96, 460–476 (2016).

    Article  CAS  Google Scholar 

  15. S. Xu, L. Xiong, Q. Deng, and D.L. McDowell: Mesh refinement schemes for the concurrent atomistic-continuum method. Int. J. Solids Struct. 90, 144–152 (2016).

    Article  CAS  Google Scholar 

  16. L. Xiong, J. Rigelesaiyin, X. Chen, S. Xu, D.L. McDowell, and Y. Chen: Coarse-grained elastodynamics of fast moving dislocations. Acta Mater. 104, 143–155 (2016).

    Article  CAS  Google Scholar 

  17. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell: Shear stress- and line length-dependent screw dislocation cross-slip in FCC Ni. Acta Mater. 122, 412–419 (2017).

    Article  CAS  Google Scholar 

  18. L. Xiong, S. Xu, D.L. McDowell, and Y. Chen: Concurrent atomistic-continuum simulations of dislocation-void interactions in fcc crystals. Int. J. Plast. 65, 33–42 (2015).

    Article  CAS  Google Scholar 

  19. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell: Validation of the concurrent atomistic-continuum method on screw dislocation/stacking fault interactions. Crystals 7, 120 (2017).

    Article  CAS  Google Scholar 

  20. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell: Edge dislocations bowing out from a row of collinear obstacles in Al. Scr. Mater. 123, 135–139 (2016).

    Article  CAS  Google Scholar 

  21. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell: Sequential slip transfer of mixed-character dislocations across Σ3 coherent twin boundary in FCC metals: A concurrent atomistic-continuum study. npj Comput. Mater. 2, 15016 (2016).

    Article  CAS  Google Scholar 

  22. S. Xu, L. Xiong, Y. Chen, and D.L. McDowell: Comparing EAM potentials to model slip transfer of sequential mixed character dislocations across two symmetric tilt grain boundaries in Ni. JOM 69, 814–821 (2017).

    Article  CAS  Google Scholar 

  23. Y. Chen and J. Lee: Atomistic formulation of a multiscale field theory for nano/micro solids. Philos. Mag. 85, 4095–4126 (2005).

    Article  CAS  Google Scholar 

  24. Y. Chen: Reformulation of microscopic balance equations for multiscale materials modeling. J. Chem. Phys. 130, 134706 (2009).

    Article  CAS  Google Scholar 

  25. J.H. Irving and J.G. Kirkwood: The statistical mechanical theory of transport processes. IV. The equations of hydrodynamics. J. Chem. Phys. 18, 817–829 (1950).

    Article  CAS  Google Scholar 

  26. C. Kittel: Introduction to Solid State Physics, 8th ed. (Wiley, Hoboken, NJ, 2004).

    Google Scholar 

  27. L. Xiong, Y. Chen, and J.D. Lee: Atomistic simulation of mechanical properties of diamond and silicon carbide by a field theory. Modell. Simul. Mater. Sci. Eng. 15, 535–551 (2007).

    Article  CAS  Google Scholar 

  28. L. Xiong and Y. Chen: Coarse-grained simulations of single-crystal silicon. Modell. Simul. Mater. Sci. Eng. 17, 035002 (2009).

    Article  CAS  Google Scholar 

  29. Y. Chen: The origin of the distinction between microscopic formulas for stress and Cauchy stress. Europhys. Lett. 116, 34003 (2016).

    Article  CAS  Google Scholar 

  30. Y. Chen and A. Diaz: Local momentum and heat fluxes in transient transport processes and inhomogeneous systems. Phys. Rev. E 94, 053309 (2016).

    Article  Google Scholar 

  31. W.C. Swope, H.C. Andersen, P.H. Berens, and K.R. Wilson: A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: Application to small water clusters. J. Chem. Phys. 76, 637–649 (1982).

    Article  CAS  Google Scholar 

  32. D. Sheppard, R. Terrell, and G. Henkelman: Optimization methods for finding minimum energy paths. J. Chem. Phys. 128, 134106 (2008).

    Article  CAS  Google Scholar 

  33. A. Brünger, C.L. Brooks, III, and M. Karplus: Stochastic boundary conditions for molecular dynamics simulations of ST2 water. Chem. Phys. Lett. 105, 495–500 (1984).

    Article  Google Scholar 

  34. D.J. Evans and G. Morriss: Statistical Mechanics of Nonequilibrium Liquids, 2nd ed. (Cambridge University Press, Cambridge, 2008).

    Book  Google Scholar 

  35. M.E. Tuckerman: Statistical Mechanics: Theory and Molecular Simulation, 1st ed. (Oxford University Press, Oxford, New York, 2010).

    Google Scholar 

  36. X. Chen, A. Diaz, L. Xiong, D.L. McDowell, and Y. Chen: Passing waves from atomistic to continuum. J. Comput. Phys. 354, 393–402 (2018).

    Article  CAS  Google Scholar 

  37. H.J.C. Berendsen, J.P.M. Postma, W.F. van Gunsteren, A. DiNola, and J.R. Haak: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984).

    Article  CAS  Google Scholar 

  38. Q. Deng, L. Xiong, and Y. Chen: Coarse-graining atomistic dynamics of brittle fracture by finite element method. Int. J. Plast. 26, 1402–1414 (2010).

    Article  CAS  Google Scholar 

  39. Q. Deng and Y. Chen: A coarse-grained atomistic method for 3D dynamic fracture simulation. Int. J. Multiscale Comput. Eng. 11, 227–237 (2013).

    Article  Google Scholar 

  40. L. Xiong and Y. Chen: Coarse-grained atomistic modeling and simulation of inelastic material behavior. Acta Mech. Solida Sin. 25, 244–261 (2012).

    Article  Google Scholar 

  41. L. Xiong, Q. Deng, G. Tucker, D.L. McDowell, and Y. Chen: A concurrent scheme for passing dislocations from atomistic to continuum domains. Acta Mater. 60, 899–913 (2012).

    Article  CAS  Google Scholar 

  42. S. Yang, L. Xiong, Q. Deng, and Y. Chen: Concurrent atomistic and continuum simulation of strontium titanate. Acta Mater. 61, 89–102 (2013).

    Article  CAS  Google Scholar 

  43. L. Xiong, D.L. McDowell, and Y. Chen: Nucleation and growth of dislocation loops in Cu, Al, and Si by a concurrent atomistic-continuum method. Scr. Mater. 67, 633–636 (2012).

    Article  CAS  Google Scholar 

  44. S. Yang, N. Zhang, and Y. Chen: Concurrent atomistic-continuum simulation of polycrystalline strontium titanate. Philos. Mag. 95, 2697–2716 (2015).

    Article  CAS  Google Scholar 

  45. S. Yang and Y. Chen: Concurrent atomistic and continuum simulation of bi-crystal strontium titanate with tilt grain boundary. Proc. R. Soc. London, Ser. A 471, 20140758 (2015).

    Google Scholar 

  46. L. Xiong, D.L. McDowell, and Y. Chen: Sub-THz phonon drag on dislocations by coarse-grained atomistic simulations. Int. J. Plast. 55, 268–278 (2014).

    Article  CAS  Google Scholar 

  47. X. Chen, L. Xiong, D.L. McDowell, and Y. Chen: Effects of phonons on mobility of dislocations and dislocation arrays. Scr. Mater. 137, 22–26 (2017).

    Article  CAS  Google Scholar 

  48. X. Chen, W. Li, L. Xiong, Y. Li, S. Yang, Z. Zheng, D.L. McDowell, and Y. Chen: Ballistic-diffusive phonon heat transport across grain boundaries. Acta Mater. 136, 355–365 (2017).

    Article  CAS  Google Scholar 

  49. X. Chen, W. Li, A. Diaz, Y. Li, Y. Chen, and D.L. McDowell: Recent progress in the concurrent atomistic-continuum method and its application in phonon transport. MRS Commun., 7, 785–797 (2017).

    Article  CAS  Google Scholar 

  50. S. Chapra and R. Canale: Numerical Methods for Engineers, 6th ed. (McGraw-Hill Science/Engineering/Math, Boston, 2009).

    Google Scholar 

  51. E. Bitzek, P. Koskinen, F. Gähler, M. Moseler, and P. Gumbsch: Structural relaxation made simple. Phys. Rev. Lett. 97, 170201 (2006).

    Article  CAS  Google Scholar 

  52. B. Eidel, A. Hartmaier, and P. Gumbsch: Atomistic simulation methods and their application on fracture. In Multiscale Modelling of Plasticity and Fracture by Means of Dislocation Mechanics, 1st ed., P. Gumbsch and R. Pippan, eds.; CISM International Centre for Mechanical Sciences (Springer, Vienna, 2010); pp. 1–57. doi: https://doi.org/10.1007/978-3-7091-0283-1_1.

    Google Scholar 

  53. E.B. Tadmor and R.E. Miller: Modeling Materials: Continuum, Atomistic and Multiscale Techniques, 1st ed. (Cambridge University Press, Cambridge, New York, 2012).

    Google Scholar 

  54. M.P. Allen and D.J. Tildesley: Computer Simulation of Liquids (Oxford University Press, New York, 1989).

    Google Scholar 

  55. L. Verlet: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98–103 (1967).

    Article  CAS  Google Scholar 

  56. J.E. Jones: On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. London, Ser. A 106, 463–477 (1924).

    Article  CAS  Google Scholar 

  57. M.S. Daw and M.I. Baskes: Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B, 29, 6443–6453 (1984).

    Article  CAS  Google Scholar 

  58. A. Stukowski: Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modell. Simul. Mater. Sci. Eng. 18, 015012 (2010).

    Article  Google Scholar 

  59. J. Li: AtomEye: An efficient atomistic configuration viewer. Modell. Simul. Mater. Sci. Eng. 11, 173 (2003).

    Article  Google Scholar 

  60. W. Humphrey, A. Dalke, and K. Schulten: VMD: Visual molecular dynamics. J. Mol. Graphics 14, 33–38 (1996).

    Article  CAS  Google Scholar 

  61. C. Begau, A. Hartmaier, E.P. George, and G.M. Pharr: Atomistic processes of dislocation generation and plastic deformation during nanoindentation. Acta Mater. 59, 934–942 (2011).

    Article  CAS  Google Scholar 

  62. C. Begau, J. Hua, and A. Hartmaier: A novel approach to study dislocation density tensors and lattice rotation patterns in atomistic simulations. J. Mech. Phys. Solids 60, 711–722 (2012).

    Article  CAS  Google Scholar 

  63. W. Schroeder, K. Martin, and B. Lorensen: Visualization Toolkit: An Object-Oriented Approach to 3D Graphics, 4th ed. (Kitware, Clifton Park, New York, 2006).

    Google Scholar 

  64. W. Gropp, T. Hoefler, R. Thakur, and E. Lusk: Using Advanced MPI: Modern Features of the Message-Passing Interface, 1st ed. (The MIT Press, Cambridge, Massachusetts, 2014).

    Google Scholar 

  65. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  66. E.B. Tadmor, M. Ortiz, and R. Phillips: Quasicontinuum analysis of defects in solids. Philos. Mag. A 73, 1529–1563 (1996).

    Article  Google Scholar 

  67. O. Pearce, T. Gamblin, B.R. de Supinski, T. Arsenlis, and N.M. Amato: Load balancing N-body simulations with highly non-uniform density. In Proceedings of the 28th ACM International Conference on Supercomputing, ICS’14 (ACM, New York, NY, 2014); pp. 113–122.

    Chapter  Google Scholar 

  68. F. Pavia and W.A. Curtin: Parallel algorithm for multiscale atomistic/continuum simulations using LAMMPS. Modell. Simul. Mater. Sci. Eng. 23, 055002 (2015).

    Article  CAS  Google Scholar 

  69. E. Biyikli and A.C. To: Multiresolution molecular mechanics: Implementation and efficiency. J. Comput. Phys. 328, 27–45 (2017).

    Article  CAS  Google Scholar 

  70. A. Hunter, F. Saied, C. Le, and M. Koslowski: Large-scale 3D phase field dislocation dynamics simulations on high-performance architectures. Int. J. High Perform. Comput. Appl. 25, 223–235 (2011).

    Article  Google Scholar 

  71. J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G.D. Peterson, R. Roskies, J.R. Scott, and N. Wilkins-Diehr: XSEDE: Accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article  CAS  Google Scholar 

  72. Y. Mishin, D. Farkas, M.J. Mehl, and D.A. Papaconstantopoulos: Interatomic potentials for monoatomic metals from experimental data and ab initio calculations. Phys. Rev. B 59, 3393–3407 (1999).

    Article  CAS  Google Scholar 

  73. G.M. Amdahl: Validity of the single processor approach to achieving large scale computing capabilities. In Proceedings of the April 18–20, 1967, Spring Joint Computer Conference, AFIPS’67 (ACM, Spring, New York, NY, 1967); pp. 483–485.

    Chapter  Google Scholar 

  74. Y. Chen and J.D. Lee: Connecting molecular dynamics to micromorphic theory. II. Balance laws. Phys. A 322, 377–392 (2003).

    Article  Google Scholar 

  75. Y. Chen and J.D. Lee: Connecting molecular dynamics to micromorphic theory. I. Instantaneous and averaged mechanical variables. Phys. A 322, 359–376 (2003).

    Article  Google Scholar 

  76. L. Xiong, X. Chen, N. Zhang, D.L. McDowell, and Y. Chen: Prediction of phonon properties of 1D polyatomic systems using concurrent atomistic-continuum simulation. Arch. Appl. Mech. 84, 1665–1675 (2014).

    Article  Google Scholar 

  77. S.R. Kalidindi, D.B. Brough, S. Li, A. Cecen, A.L. Blekh, F.Y.P. Congo, and C. Campbell: Role of materials data science and informatics in accelerated materials innovation. MRS Bull. 41, 596–602 (2016).

    Article  Google Scholar 

  78. H. Chen, S. Xu, W. Li, J. Rigelesaiyin, T. Phan, and L. Xiong: A spatial decomposition parallel algorithm for a concurrent atomistic-continuum simulator and its preliminary applications, Comput. Mater. Sci. 144, 1–10 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

These results are based upon work supported by the National Science Foundation as a collaborative effort between Georgia Tech (CMMI-1232878) and University of Florida (CMMI-1233113). Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The authors thank Dr. Jinghong Fan, Dr. Qian Deng, Dr. Shengfeng Yang, Dr. Xiang Chen, Mr. Rui Che, Mr. Weixuan Li, and Mr. Ji Rigelesaiyin for helpful discussions, and Dr. Aleksandr Blekh for arranging execution of PyCAC via MATIN. The work of SX was supported in part by Georgia Tech Institute for Materials and in part by the Elings Prize Fellowship in Science offered by the California NanoSystems Institute (CNSI) on the UC Santa Barbara campus. SX also acknowledges support from the Center for Scientific Computing from the CNSI, MRL: an NSF MRSEC (DMR-1121053). LX acknowledges the support from the Department of Energy, Office of Basic Energy Sciences under Award Number DE-SC0006539. The work of LX was also supported in part by the National Science Foundation under Award Number CMMI-1536925. DLM is grateful for the additional support of the Carter N. Paden, Jr. Distinguished Chair in Metals Processing. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuozhi Xu.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, S., Payne, T.G., Chen, H. et al. PyCAC: The concurrent atomistic-continuum simulation environment. Journal of Materials Research 33, 857–871 (2018). https://doi.org/10.1557/jmr.2018.8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.8

Navigation