[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Opinion dynamics based on social learning theory

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

In opinion dynamics, how individuals update their opinions has a profound impact on the final opinion distribution. Though extensive efforts have been made to explore opinion evolution rules, it still remains a challenging issue since opinions of individuals are usually shaped by complicated factors in the real world. In this paper, we introduce social learning theory (SLT) into opinion dynamics and study how the opinion evolution rule derived from SLT affects opinion evolution. Based on SLT, three factors are considered when individuals update their opinions, peer influence, role model influence and personal experience, and three parameters are introduced to regulate their weights of them. Numerical simulations on scale-free networks reveal that the opinion dynamics based on SLT could effectively promote consensus in a population. Especially, the role model influence from surroundings plays a significant role in the consensus of opinions. Whereas, consensus could not be realized through only the role model influence, and an appropriate combination with peer influence can facilitate consensus best. Meanwhile, we find that, holding personal experience to a certain extent is in favor of the final consensus, although it may extend the relaxation time. Besides, when the weight of personal experience is fixed, there exists an optimal weight combination of peer influence and role model influence that leads to the minimum relaxation time. These results may offer a new perspective on understanding the evolution of public opinions and the emergence of consensus.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability Statement

The results are obtained mainly through numerical simulation, and all the related data have been shown in the figures of the article.

References

  1. M.H. DeGroot, Reaching a consensus. J. Am. Stat. Assoc. 69(345), 118–121 (1974)

    Article  MATH  Google Scholar 

  2. Y. Dong, M. Zhan, G. Kou, Z. Ding, H. Liang, A survey on the fusion process in opinion dynamics. Information Fusion 43, 57–65 (2018)

    Article  MATH  Google Scholar 

  3. T. Mouw, M.E. Sobel, Culture wars and opinion polarization: the case of abortion. Am. J. Sociol. 106(4), 913–943 (2001)

    Article  MATH  Google Scholar 

  4. J. Zhu, Y. Yao, W. Tang, H. Zhang, An agent-based model of opinion dynamics with attitude-hiding behaviors. Physica A 603(127), 662 (2022)

    MathSciNet  MATH  Google Scholar 

  5. R. Hegselmann, U. Krause, Opinion dynamics and bounded confidence: models, analysis and simulation (J. Artif. Soc. Soc, Simul, 2002)

    MATH  Google Scholar 

  6. S.G. Brush, History of the lenz-ising model. Rev. Mod. Phys. 39(4), 883 (1967)

    Article  ADS  MATH  Google Scholar 

  7. K. Sznajd-Weron, J. Sznajd, Opinion evolution in closed community. Int. J. Mod. Phys. C 11(06), 1157–1165 (2000)

    Article  ADS  MATH  Google Scholar 

  8. G. Deffuant, D. Neau, F. Amblard, G. Weisbuch, Mixing beliefs among interacting agents. Adv. Complex Syst. 3(01n04), 87–98 (2000)

    Article  MATH  Google Scholar 

  9. N.E. Friedkin, E.C. Johnsen, Influence networks and opinion change. Advances in Group Processes 16(1), 1–29 (1999)

    MATH  Google Scholar 

  10. E. Kurmyshev, H.A. Juárez, R.A. González-Silva, Dynamics of bounded confidence opinion in heterogeneous social networks: Concord against partial antagonism. Physica A 390(16), 2945–2955 (2011)

    Article  ADS  MATH  Google Scholar 

  11. X. Yin, H. Wang, P. Yin, H. Zhu, Agent-based opinion formation modeling in social network: A perspective of social psychology. Physica A 532(121), 786 (2019)

    MATH  Google Scholar 

  12. M. Pineda, G. Buendía, Mass media and heterogeneous bounds of confidence in continuous opinion dynamics. Physica A 420, 73–84 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Z. Zheng, G. Hu, B. Hu, Phase slips and phase synchronization of coupled oscillators. Phys. Rev. Lett. 81(24), 5318 (1998)

    Article  ADS  MATH  Google Scholar 

  14. G.V. Osipov, B. Hu, C. Zhou, M.V. Ivanchenko, J. Kurths, Three types of transitions to phase synchronization in coupled chaotic oscillators. Phys. Rev. Lett. 91(2), 024,101 (2003)

    Article  MATH  Google Scholar 

  15. M. Mesbahi, Graph theoretic methods in multiagent networks (2010)

  16. M. Li, H. Dankowicz, Impact of temporal network structures on the speed of consensus formation in opinion dynamics. Physica A 523, 1355–1370 (2019)

    Article  ADS  MATH  Google Scholar 

  17. K. Sugishita, M.A. Porter, M. Beguerisse-Díaz, N. Masuda, Opinion dynamics on tie-decay networks. Physical Review Research 3(2), 023,249 (2021)

    Article  MATH  Google Scholar 

  18. J. Liu, S. Huang, N.M. Aden, N.F. Johnson, C. Song, Emergence of polarization in coevolving networks. Phys. Rev. Lett. 130(3), 037,401 (2023)

    Article  MathSciNet  Google Scholar 

  19. F. Baumann, P. Lorenz-Spreen, I.M. Sokolov, M. Starnini, Modeling echo chambers and polarization dynamics in social networks. Phys. Rev. Lett. 124(4), 048,301 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. A. Das, S. Gollapudi, K. Munagala, in Proceedings of the 7th ACM international conference on Web search and data mining (2014), pp. 403–412

  21. J. Wei, Y. Jia, H. Zhu, X. Hong, W. Huang, Opinion dynamics model with bounded confidence and the sleeper effect. Computational Intelligence and Neuroscience 2022 (2022)

  22. H. Yu, B. Xue, J. Zhang, R.R. Liu, Y. Liu, F. Meng, Opinion cascade under perception bias in social networks. Chaos: An Interdisciplinary Journal of Nonlinear Science 33(11) (2023)

  23. J.L. Iribarren, E. Moro, Impact of human activity patterns on the dynamics of information diffusion. Phys. Rev. Lett. 103(3), 038,702 (2009)

    Article  MATH  Google Scholar 

  24. W. Mei, F. Bullo, G. Chen, J.M. Hendrickx, F. Dörfler, Micro-foundation of opinion dynamics: Rich consequences of the weighted-median mechanism. Physical Review Research 4(2), 023,213 (2022)

    Article  MATH  Google Scholar 

  25. H.X. Yang, A consensus opinion model based on the evolutionary game. Europhys. Lett. 115(4), 40,007 (2016)

    Article  MATH  Google Scholar 

  26. S. Baldassarri, A. Gallo, V. Jacquier, A. Zocca, Ising model on clustered networks: A model for opinion dynamics. Physica A 623, 128,811 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Tomé, C.E. Fiore, M.J. de Oliveira, Stochastic thermodynamics of opinion dynamics models. Phys. Rev. E 107(6), 064,135 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  28. Y. Shang, Deffuant model of opinion formation in one-dimensional multiplex networks. J. Phys. A: Math. Theor. 48(39), 395,101 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  29. B. Kozma, A. Barrat, Consensus formation on adaptive networks. Phys. Rev. E 77(1), 016,102 (2008)

    Article  MATH  Google Scholar 

  30. S.M.H. Bamakan, I. Nurgaliev, Q. Qu, Opinion leader detection: A methodological review. Expert Syst. Appl. 115, 200–222 (2019)

    Article  MATH  Google Scholar 

  31. K. Kacperski et al., Opinion formation model with strong leader and external impact: a mean field approach. Physica A 269(2–4), 511–526 (1999)

    Article  ADS  MATH  Google Scholar 

  32. Y. Zhao, L. Zhang, M. Tang, G. Kou, Bounded confidence opinion dynamics with opinion leaders and environmental noises. Computers & Operations Research 74, 205–213 (2016)

    Article  MATH  Google Scholar 

  33. R. Xiao, T. Yu, J. Hou, Modeling and simulation of opinion natural reversal dynamics with opinion leader based on hk bounded confidence model. Complexity 2020, 1–20 (2020)

    ADS  MATH  Google Scholar 

  34. A. Bandura, R.H. Walters, Social learning theory, vol. 1 (Englewood cliffs Prentice Hall, 1977)

  35. C. Cheng, C. Yu, Opinion dynamics with bounded confidence and group pressure. Physica A 532, 121,900 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  36. K. Li, H. Liang, G. Kou, Y. Dong, Opinion dynamics model based on the cognitive dissonance: An agent-based simulation. Information Fusion 56, 1–14 (2020)

    Article  MATH  Google Scholar 

  37. H. Chau, C. Wong, F. Chow, C.H.F. Fung, Social judgment theory based model on opinion formation, polarization and evolution. Physica A 415, 133–140 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Y. Dong, Z. Ding, L. Martínez, F. Herrera, Managing consensus based on leadership in opinion dynamics. Inf. Sci. 397, 187–205 (2017)

    Article  MATH  Google Scholar 

  39. A.L. Barabási, R. Albert, Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Structure of growing networks with preferential linking. Phys. Rev. Lett. 85(21), 4633 (2000)

    Article  ADS  MATH  Google Scholar 

  41. X. Chen, S. Zhao, W. Li, Opinion dynamics model based on cognitive styles: Field-dependence and field-independence. Complexity 2019(1), 2864,124 (2019)

    Article  MATH  Google Scholar 

  42. X. Liu, C. Huang, H. Li, Q. Dai, J. Yang, The combination of pairwise and group interactions promotes consensus in opinion dynamics. Complexity 2021(1), 4382,836 (2021)

    Article  MATH  Google Scholar 

  43. Y. Luo, Y. Li, C. Sun, C. Cheng, Adapted deffuant-weisbuch model with implicit and explicit opinions. Physica A 596, 127,095 (2022)

  44. S. Fortunato, Universality of the threshold for complete consensus for the opinion dynamics of deffuant, et al., International Journal of Modern Physics C 15(09), 1301–1307 (2004)

  45. P. Bolzern, P. Colaneri, G. De Nicolao, Opinion dynamics in social networks: The effect of centralized interaction tuning on emerging behaviors. IEEE transactions on computational social systems 7(2), 362–372 (2020)

    Article  MATH  Google Scholar 

  46. S. Patterson, B. Bamieh, in Proceedings of the First Workshop on Social Media Analytics (2010), pp. 98–105

  47. X. Chen, Z. Wu, H. Wang, W. Li, et al., Impact of heterogeneity on opinion dynamics: Heterogeneous interaction model. Complexity 2017 (2017)

  48. J. Lorenz, Heterogeneous bounds of confidence: meet, discuss and find consensus. Complexity 15(4), 43–52 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  49. A.F. Peralta, J. Kertész, G. Iñiguez, Opinion dynamics in social networks: From models to data. arXiv preprint arXiv:2201.01322 (2022)

  50. D. Carpentras, P.J. Maher, C. O’Reilly, M. Quayle, Deriving an opinion dynamics model from experimental data. Journal of Artificial Societies & Social Simulation 25(4) (2022)

  51. C. Vande Kerckhove, S. Martin, P. Gend, P.J. Rentfrow, J.M. Hendrickx, V.D. Blondel, Modelling influence and opinion evolution in online collective behaviour. PLoS ONE 11(6), e0157,685 (2016)

    Article  Google Scholar 

  52. J. Piao, J. Liu, F. Zhang, J. Su, Y. Li, Human-ai adaptive dynamics drives the emergence of information cocoons. Nature Machine Intelligence pp. 1–11 (2023)

Download references

Author information

Authors and Affiliations

Authors

Contributions

Dong Jiang: Conceptualization, Methodology, Investigation, Visualization, Writing-original draft, Writing-review and editing. Qionglin Dai: Writing-original draft, Writing-review and editing, Validation. Haihong Li: Visualization, Data curation, Software. Junzhong Yang: Conceptualization, Methodology, Writing-review and editing, Supervision.

Corresponding authors

Correspondence to Qionglin Dai or Haihong Li.

Ethics declarations

Conflict of interest

This project received no external funding. The authors have no Conflict of interest to declare.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, D., Dai, Q., Li, H. et al. Opinion dynamics based on social learning theory. Eur. Phys. J. B 97, 193 (2024). https://doi.org/10.1140/epjb/s10051-024-00838-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00838-6