[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Language dynamics model with finite-range interactions influencing the diffusion of linguistic traits and human dispersal

  • Regular Article - Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We study a multi-agent model of language dynamics that incorporates diffusion of linguistic traits and human dispersal, both influenced by local linguistic environment. We assume that each individual is characterized by a string, representing a language in terms of a set of linguistic features. Each individual can interact only with other individuals located within a finite neighborhood. The interaction between two individuals results in copying or passing a linguistic trait; the direction of the learning process is determined by the level of linguistic similarity with the neighborhood, estimated through the average Levenshtein distance. The latter determines also the diffusion coefficient of the random walk performed by the individuals. The dynamics of the model is investigated through numerical simulations over a wide range of parameters. Our results show a rich variety of possible final scenarios, ranging from language segregation and dialects formation to linguistic continua and consensus. The obtained language size distribution, spatial distribution of languages, and the correlation between geographic and linguistic distance at equilibrium resemble well the results observed in real systems.

Graphical abstract

The model dynamics incorporates diffusion of linguistic traits and human dispersal, both influenced by the local linguistic environment, in the spirit of the Axelrod and Shelling model, respectively. The system can reach different final scenarios ranging from consensus to fragmentation, like the equilibrium configuration shown that shows self-organized clusters: different symbols correspond to different languages (strings in the dendrogram) and each color represents a different dialect defined by the group emerging from the clustering analysis

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. R. Axelrod, The dissemination of culture—a model with local convergence and global polarization. J. Conflict Resol. 41(2), 203–226 (1997)

    Article  Google Scholar 

  2. T.C. Schelling, Micromotives and macrobehavior (W. W. Norton & Co., New York, 1978)

    Google Scholar 

  3. Inés. Caridi, Francisco Nemiña, Juan P. Pinasco, Pablo Schiaffino, Schelling-voter model: an application to language competition. Chaos, Solitons & Fractals 56, 216–221 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  4. I. Caridi, J.P. Pinasco, N. Saintier, P. Schiaffino, Characterizing segregation in the Schelling-voter model. Physica a: Stat. Mech. Appl. 487, 125–142 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  5. C. Gracia-Lázaro, L.F. Lafuerza, L.M. Floría, Y. Moreno, Residential segregation and cultural dissemination: an Axelrod–Schelling model. Phys. Rev. E 80, 046123 (2009)

    Article  ADS  Google Scholar 

  6. C. Gracia-Lázaro, L.M. Floría, Y. Moreno, Selective advantage of tolerant cultural traits in the Axelrod–Schelling model. Phys. Rev. E 83, 056103 (2011)

    Article  ADS  Google Scholar 

  7. Emilio Hernández-García, Els Heinsalu, Cristóbal López, Spatial patterns of competing random walkers. Ecol. Complex. 21, 166–176 (2015)

    Article  Google Scholar 

  8. K. Beijering, C. Gooskens, W. Heeringa, Predicting intelligibility and perceived linguistic distance by means of the Levenshtein algorithm. Linguist. Neth. 25, 13–24 (2008)

    Article  Google Scholar 

  9. Wilbert Heeringa, Charlotte Gooskens, Norwegian dialects examined perceptually and acoustically. Comput. Hum. 37(3), 293–315 (2003)

    Article  Google Scholar 

  10. E. Heinsalu, M. Patriarca, J.L. Léonard, The role of bilinguals in language competition. Adv. Complex Syst. 17(1), 1450003 (2014)

    Article  MathSciNet  Google Scholar 

  11. M. Patriarca, E. Heinsalu, J.L. Léonard, Languages in space and time: models and methods from complex systems theory, in Physics of society: econophysics and sociophysics. (Cambridge University Press, Cambridge, 2020)

    Google Scholar 

  12. T. Teşileanu, H. Meyer-Ortmanns, Competition of languages and their Hamming distance. Int. J. Modern Phys. C 17(02), 259–278 (2006)

    Article  ADS  Google Scholar 

  13. E. Heinsalu, E. Hernandex-García, C. Lopez, Spatial clustering of interacting bugs: Lévy flights versus Gaussian jumps. EPL 92, 40011 (2010)

    Article  ADS  Google Scholar 

  14. E. Heinsalu, E. Hernandex-García, C. Lopez, Competitive Brownian and Lévy walkers. Phys. Rev. E 85, 041105 (2012)

    Article  ADS  Google Scholar 

  15. E. Hernandex-García, C. Lopez, Birth, death and diffusion of interacting particles. J. Phys.: Condens. Matter 17, S4263 (2013)

    Google Scholar 

  16. B.F. Grimes, Ethnologue: languages of the world (Summer Institute of Linguistics, Dallas, 2000)

    Google Scholar 

  17. W.J. Sutherland, Parallel extinction risk and global distribution of languages and species. Nature 423, 276 (2003)

    Article  ADS  Google Scholar 

  18. T. Amano, B. Sandel, H. Eager, E. Bulteau, J.-C. Svenning, B. Dalsgaard, C. Rahbek, R.G. Davies, William J. Sutherland, Global distribution and drivers of language extinction risk. Proc. R. Soc. B: Biol. Sci. 281(1793), 20141574 (2014)

    Article  Google Scholar 

  19. F. Grin, G. Fürst, Measuring linguistic diversity: a multi-level metric. Soc. Indic. Res. 164, 601–621 (2022)

    Article  Google Scholar 

  20. P. Jeszenszky, P. Stoeckle, E. Glaser, R. Weibel, Exploring global and local patterns in the correlation of geographic distances and morphosyntactic variation in Swiss German. J. Linguist. Geogr. 5(2), 86–108 (2017)

    Article  Google Scholar 

  21. S. Pickl, A. Spettl, S. Pröll, S. Elspaß, W. König, Volker Schmidt, Linguistic distances in dialectometric intensity estimation. J. Linguist. Geogr. 2(1), 25–40 (2014)

    Article  Google Scholar 

  22. J. Nerbonne, Peter Kleiweg, Toward a dialectological yardstick. J. Quant. Linguist. 14(2–3), 148–166 (2007)

    Article  Google Scholar 

  23. J.L.A. Huisman, A. Majid, R. van Hout, The geographical configuration of a language area influences linguistic diversity. PLoS ONE 14(6), 1–18 (2019)

    Article  Google Scholar 

  24. J. Nerbonne, W. Kretzschmar, Introducing computational techniques in dialectometry. Comput. Hum. 37(3), 245–255 (2003)

    Article  Google Scholar 

  25. A. Baronchelli, L. Dall’Asta, A. Barrat, V. Loreto, Topology-induced coarsening in language games. Phys. Rev. E 73, 015102 (2006)

  26. J.W. Minett, W.S.-Y. Wang, Modelling endangered languages: the effects of bilingualism and social structure. Lingua 118, 19 (2008)

    Article  Google Scholar 

  27. M. Patriarca, X. Castelló, J.R. Uriarte, V.M. Eguíluz, M. San Miguel, Modeling two-language competition dynamics. Adv. Comp. Syst. 15(3 &4), 1250048 (2012)

    Article  MathSciNet  Google Scholar 

  28. M. Patriarca, E. Heinsalu, Influence of geography on language competition. Physica A 388(2–3), 174–186 (2009)

    Article  ADS  Google Scholar 

  29. D.A. Ammosov, A.V. Grigorev, N.V. Malysheva, L.S. Zamorshchikova, Numerical modeling two natural languages interaction. J. Comput. Appl. Math. 407, 114074 (2022)

    Article  MathSciNet  Google Scholar 

  30. M. Patriarca, M. Budnitski, E. Heinsalu. A patch-model of language competition (2024)

Download references

Funding

The authors acknowledge support from the Estonian Research Council through Grant PRG1059.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Els Heinsalu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zankoc, C., Heinsalu, E. & Patriarca, M. Language dynamics model with finite-range interactions influencing the diffusion of linguistic traits and human dispersal. Eur. Phys. J. B 97, 66 (2024). https://doi.org/10.1140/epjb/s10051-024-00706-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/s10051-024-00706-3

Navigation