Abstract
This paper deals with the problem of map-aided navigation. Based on the previous overview of nonlinear filtering algorithms for this problem solution, current trends in the development of such algorithms are discussed. Some new lines in identification of error models and the use of information on the probable vehicle motion are considered.
Similar content being viewed by others
References
Stepanov, O.A. and Toropov, A.B., Nonlinear filtering for map-aided navigation, Part 1. An overview of algorithms, Gyroscopy and Navigation, 2015, vol. 6, no. 4, pp. 324–337.
Nørgaard, M., Poulsen, N.K., and Ravn, O., New developments in state estimation for nonlinear systems, Automatica, 2000, 36(11), pp. 1627–1638.
Chen, Z., Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond, 2003, http://www.-Fi (xi 1 ) MV MV xiMV dsi.unifi.it/users/chisci/idfric/Nonlinear_filtering_Ch en.pdf
Li, X.R. and Jilkov, V.P., A survey of maneuvering target tracking: Approximation techniques for nonlinear filtering, Proc. SPIE Conference on Signal and Data Processing of Small Targets, 2004, pp. 537–550.
Juiler, S.J. and Uhlmann, J.K., Unscented filtering and nonlinear estimation, Proc. IEEE, 2004, vol. 92(3), pp. 401–422.
Li, X.R., Recursibility, batch and recursive forms of optimal linear estimation and filtering, Proc. of the Workshop on Multisensor Target Tracking: A Tribute to Oliver E. Drummond, 2004, pp. 99–111.
Daum, F., Nonlinear filters: Beyond the Kalman filter, IEEE Aerospace and Electronic Systems, 2005, vol. 20(8), pp. 57–71.
Metzger, J., Wisotzky, K., Wendel, J., and Trömmer, G.F., Sigma-point filter for terrain referenced navigation, Proc. of AIAA Guidance, Navigation and Control Conference, San Francisco, CA, August 2005.
Lefebvre, T., Bruyninckx, H., and de Schutter, J., Nonlinear Kalman Filtering for Force-Controlled Robot Tasks, 2005, Berlin: Springer.
Simon, D. Optimal State Estimation. Kalman, H8, and Nonlinear approaches, A John Wiley & Sons, Inc., 2006.
Stepanov, O.A., A linear optimal algorithm in nonlinear problems of navigation data processing, Giroskopiya i Navigatsiya, 2006, no. 4, pp. 11–20.
Ånonsen, K.B. and Hallingstad O., Sigma point Kalman filter for underwater terrain-based navigation, Control Applications in Marine Systems, 2007, vol. 7, Part 1, pp. 106–110.
Arasaratnam, I., Haykin, S., and Elliott, R.J., Discrete-time nonlinear filtering algorithms using Gauss–Hermite quadrature, Proc. IEEE, 2007, vol. 95, no. 5, pp. 953–977.
Stepanov, O.A., Toropov, A.B., and Amosov, O.S., Comparison of Kalman-type algorithms in nonlinear navigation problems for autonomous vehicles, 6-th IFAC Symposium on Intelligent Autonomous Vehicles, 2007, pp. 493–498.
Arasaratnam, I. and Haykin, S., Cubature Kalman filters, IEEE Trans. on Automatic Control, 2009, vol. 54, no. 6, pp. 1254–1269.
Stepanov, O.A. and Toropov, A.B., Linear optimal algorithms in estimation problems with nonlinear measurements. Relation to Kalman-type algorithms. Izvestiya TulGU. Tekhnicheskii vestnik, 2012, no. 7, pp. 172–189.
Duník, J., Šimandl, M., and Straka, O., Unscented Kalman filter: Aspects and adaptive setting of scaling parameter, IEEE Trans, on Automatic Control, 2012, 57(9), pp. 2411–2416.
Stano, P., Lendek, Z., Braaksma, J., Babuska, R., de Keizer, C. and den Dekker, A.J., Parametric Bayesian filters for nonlinear stochastic dynamical systems: A survey, IEEE Trans. on Cybernetics, 2013, vol. 43, no. 6, pp. 1607–1624.
Stepanov, O.A., The basic approaches and methods used to solve applied problems of measurement information processing, Materialy XVI konferentsii molodykh uchenykh “Navigatsiya i upravlenie dvizheniem” (Proc. XVI Conference of Young Scientists “Navigation and Motion Control”), St. Petersburg: Elektropribor, 2014, pp. 12–35.
Zaritskii, V.S., Svetnik, V.B., and Shimelevich, L.I., Monte Carlo technique in problems of optimal data processing, Automation and Remote Control, 1975, vol. 12, pp. 95–103.
Gordon, N.J., Salmond, D.J., and Smith, A.F.M., Novel approach to nonlinear/non-Gaussian Bayesian state estimation, IEEE Proceedings, Pt. F, 1993, vol. 140, no. 2, pp. 107–113.
Stepanov, O.A., Ivanov, A.M., and Korenevski, M.L., Monte Carlo methods for a special nonlinear filtering problem, 11th IFAC International Workshop Control Applications of Optimization, 2000, vol. 1, pp. 347–353.
Doucet, A., de Freitas, N. and Gordon, N.J., Sequential Monte Carlo Methods in Practice, New York: Springer-Verlag, 2001.
Gustafsson, F., Gunnarsson, F., Bergman, N., Forssell, U., Jansson, J., Karlsson, R., and Nordlund, P-J., Particle filters for positioning, navigation and tracking, IEEE Trans. on Signal Processing, 2002, vol. 50, no. 2, pp. 425–437.
Arulampalam, M.S., Maskell, S., and Gordon, N., Tutorial on particle filters for on-line nonlinear/nonGaussian Bayesian tracking, IEEE Trans. on Signal Processing, 2002, vol. 50, no. 2, pp. 174–188.
Metzger, J. and Trömmer, G.F., Studies on four terrain referenced navigation techniques, Symposium Gyro Technology, 2002, pp. 15.0–15.9.
Karlsson, R. and Gustafsson, F., Particle filter for underwater terrain navigation: Technical report, Report no.: LiTH-ISY-R-2530. Submitted to Statistical Signal Processing workshop 2003, http://www.control.isy.liu.se/publications.
Flament, A., Fleury, G., and Davoust, M.-E., Particle filter and Gaussian-mixture filter efficiency evaluation for terrain-aided navigation, Proc. XII European Signal Processing Conference, 2004, pp. 605–608.
Schön, T., Gustaffson, F., and Nordlund, P.-J., Marginalized particle filters for linear/nonlinear statespace models, IEEE Trans. on Signal Processing, 2005, vol. 53, no. 7, pp. 2279–2289.
Ånonsen, K.B. and Hallingstad, O., Terrain aided underwater navigation using point mass and particle filters, PLANS IEEE, 2006, pp. 1027–1035.
Gustafsson, F., Particle filter theory and practice with positioning applications, IEEE Aerospace and Electronic Systems Magazine, vol. 25, no. 7, 2010, pp. 53–82.
Stepanov, O.A. and Toropov, A.B., Comparison of point mass and particle filters in map-aided navigation, 17th Saint Petersburg International Conference on Integrated Navigation Systems, 2010, pp. 381–384.
Doucet, A. and Johansen, A.M., A tutorial on particle filtering and smoothing: Fifteen years later, In: The Oxford Handbook of Nonlinear Filtering. Oxford Handbooks in Mathematics, Oxford: Oxford University Press, 2011, pp. 656–705.
Stepanov, O.A. and Toropov, A.B., Application of the Monte Carlo methods with partial analytical integration techniques to the problem of navigation system aiding, 20th Saint Petersburg International Conference on Integrated Navigation Systems, 2013, pp. 298–301.
Berkovskii N.A. and Stepanov, O.A., Studying the error in the calculation of the optimal Bayesian estimate by the Monte Carlo method in nonlinear problems, Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 2013, vol. 52, no. 3, pp. 3–14.
Särkkä, S., Bayesian Filtering and Smoothing, Cambridge University Press, 2013.
Stepanov, O.A. and Toropov, A.B., Application of sequential Monte Carlo methods with procedures of analytical integration to navigation data processing, Materialy XII Vserossiiskogo soveshchaniya po problemam upravleniya, (XII All-Russian Conference on Control), Moscow: V.A. Trapeznikov Institute of Control Sciences), 2014, pp. 3324–3337.
Magill, D.T., Optimal adaptive estimation sampled stochastic processes, IEEE Trans. on Automatic Control, Oct. 1965, vol. AC-IO, no. 4, pp. 434–439.
Lainiotis, D.G., Optimal adaptive estimation: Structure and parameter adaptation. IEEE Trans. Automatic Control, Apr. 1971, vol. 16, pp. 160–170.
Lainiotis, D.G., Partitioning: A unifying framework for adaptive systems, I: Estimation, II: Control, IEEE Trans., 1976, vol. 64, no. 8. I. Estimation, pp. 1126–1140. II: Control, pp. 1182–1198.
Stepanov, O.A., Primenenie teorii nelineinoi fil’tratsii v zadachakh obrabotki navigatsionnoi informatsii (Application of Nonlinear Filtering Theory for Navigation Data Processing), St. Petersburg: Elektropribor, 1998.
Sobol’, I.M., Chislennye metody Monte-Karlo (Numerical Monte Carlo methods), Moscow: Nauka, 1973.
Ermakov, S.M., Metod Monte-Karlo i Smezhnye Voprosy (Monte Carlo methods and related issues), Moscow: Nauka, 1971.
Stepanov, O.A., Motorin A.V., Vasil’ev, V.A., and Toropov, A.B., Using nonlinear filtering methods for constructing error models of sensors and map, Materialy 29 konferentsii pamyati vydayushchegosya konstruktora giroskopicheskikh priborov N.N. Ostryakova (Proc. 29th Conf. in Memory of N.N. Ostryakov), St. Petersburg: Elektropribor, 2014, pp. 293–302.
Beloglazov, I.N. and Kazarin, S.N., Stereoscopic navigation systems, Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 1997, no. 6, pp. 15–37.
Beloglazov, I.N. and Kazarin, S.N., Joint optimal estimation, identification, and testing of hypotheses in discrete dynamical systems, Izvestiya Rossiiskoi akademii nauk. Teoriya i sistemy upravleniya, 1998, no. 4, pp. 69–73.
Rozov, A.K., Nelineinaya fil’tratsiya signalov (Nonlinear Signal Filtering), Moscow: Politekhnika, 2002.
Beloglazov, I.N., Kazarin, S.N., Stereoscopic navigation systems and observations, Giroskopiya i Navigatsiya, no. 2 (29), 2000, pp. 70–87.
Dmitriev, S.P. and Stepanov, O.A., Multialternative filtering in navigation data processing, Radotekhnika, 2004, no.7, pp. 11–17.
Stepanov, O.A., Sokolov, A.I., and Dolnakova, A.S., Analyzing the potential accuracy in estimating the parameters of stochastic processes in navigation data processing, Materialy XII Vserossiiskogo soveshchaniya po problemam upravleniya, (XII All-Russian Conference on Control), Moscow: V.A. Trapeznikov Institute of Control Sciences), 2014, pp. 3324–3337.
Stepanov, O.A. and Motorin, A.V., Identification of sensor errors: Allan variance vs nonlinear filtering, Proc. 21st Saint Petersburg International Conference on Integrated Navigation Systems, St. Petersburg, 2014, pp.123–128.
Stepanov, O.A., Sokolov A.V., Toropov, A.B., Vasil’ev, V.A., and Krasnov, A.A., Choosing informative trajectories in the problem of correlation extreme navigation with consideration for errors of map and sensors, Materialy 29 konferentsii pamyati vydayushchegosya konstruktora giroskopicheskikh priborov N.N. Ostryakova (Proc. 29th Conf. in Memory of N.N. Ostryakov), St. Petersburg: Elektropribor, 2014, pp. 217–225.
Stepanov, O.A. and Motorin, A.V., Designing an error model for navigation sensors using the Bayesian approach, 2015 IEEE International Conference on Multisensor Fusion and lntegration for Intelligent Systems (MFI), Sept 14–16, 2015. San Diego, CA, USA, pp. 54–58.
Stepanov, O.A., Vasilyev, V.A., and Dolnakova, A.S., Cramer–Rao lower bound for parameters of random processes in navigation data processing, 21st Mediterranean Conference on Control & Automation (MED), Platanias–Chania, Crete, Greece, June 25–28, 2013, pp. 1214–1221.
Koifman, M. and Bar–Itzhack, I., Inertial navigation system aided by aircraft dynamics, IEEE Trans. on Control Systems Technology 1999, 7 (4), pp. 487493.
Canciani, A.J. and Raquet, J.F., Absolute positioning using the Earth’s magnetic anomaly field, Proc. Institute of Navigation 2015 International Technical Meeting, 2015, pp. 265–278.
Stepanov, O.A., Koshaev, D.A., and Motorin, A.V., Designing models for signals and errors of sensors in airborne gravimetry using nonlinear filtering methods, Proc. Institute of Navigation 2015 International Technical, 2015, pp. 279–284.
Brown R.G., Integrated navigation systems and Kalman filtering: A perspective, Navigation, USA, 1972–1973, vol.19, no. 4, pp. 355–362.
Brown, R.G. and Hwang, P.Y.C., Introduction to Random Signals and Applied Kalman Filtering. 2nd ed., Wiley, New York,1992.
Mansour, M.E.E. and Stepanov, O.A., Complementary filter in the problems of integrated processing of redundant measurement, Trudy Vserossiiskoi nauchnoi konferentsii po problemam upravleniya v tekhnicheskikh sistemakh (Proc. of All-Russian Scientific Conference on Problems of Control in Technical Systems, 2015, pp. 380–384.
Dmitriev, S.P. and Stepanov, O.A., Noninvariant algorithms for INS data processing, Giroskopiya i Navigatsiya, 2000, no. 1(30), pp. 24–38.
Krasovskii, A.A,, Beloglazov, I.N., and Chigin, G.P., Teoriya korrelyatsionno-ekstremal’nykh navigatsionnykh sistem (Theory of Correlation-Extreme Navigation Systems), Moscow: Nauka, 1979.
Dmitriev, S.P. and Koshaev, D.A., Estimation of continuously differentiable signal with allowance for constraints, Automation and Remote Control, 2011, 72:7, 1458–1473
Crocoll, P., Seibold, J., Scholz, G., and Trommer, G.F., Model-aided navigation for a quadrotor helicopter: A novel navigation system and first experimental results, Journal of the Institute of Navigation, vol. 61, no 4, 2014, pp. 253–271.
Honkavirta, V., Perälä, T., Ali-Löytty, S., and Piché, R., A comparative survey of WLAN location fingerprinting methods, Proc. 6th Workshop on Positioning, Navigation and Communication 2009 (WPNC’09). Hannover, Germany, March 2009, pp. 243–251.
Feder, H.J.S., Leonard, J.J., and Smith, C.M., Adaptive mobile robot navigation and mapping, Int. J. of Robotics Research, Special Issue on Field and Service Robotics, July 1999, vol. 18, no. 7, pp. 650–668.
Törnqvist, D, Schön, Th. B., Karlsson, R., and Gustafsson, F., Particle filter SLAM with high dimensional vehicle model. Journal of Intelligent and Robotic Systems, August 2009, 55(4-5), pp. 249–266.
Ho, B. et al., Autonomous navigation for autonomous underwater vehicles based on information filters and active sensing, Sensors, 2011, no. 11, pp. 10958–10980.
Author information
Authors and Affiliations
Corresponding author
Additional information
Published in Giroskopiya i Navigatsiya, 2015, No. 4, pp. 147–159.
Rights and permissions
About this article
Cite this article
Stepanov, O.A., Toropov, A.B. Nonlinear filtering for map-aided navigation Part 2. Trends in the algorithm development. Gyroscopy Navig. 7, 82–89 (2016). https://doi.org/10.1134/S2075108716010132
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S2075108716010132