[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Projections and Traces on von Neumann Algebras

  • Published:
Lobachevskii Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let P, Q be projections on a Hilbert space. We prove the equivalence of the following conditions: (i) PQ + QP ≤ 2(QPQ)p for some number 0 < p ≤ 1; (ii) PQ is paranormal; (iii) PQ is M*-paranormal; (iv) PQ = QP. This allows us to obtain the commutativity criterion for a von Neumann algebra. For a positive normal functional φ on von Neumann algebra \(\mathcal{M}\) it is proved the equivalence of the following conditions: (i) φ is tracial; (ii) φ(PQ + QP) ≤ 2φ((QPQ)p) for all projections P,Q\(\mathcal{M}\) and for some p = p(P, Q) ∈ (0,1]; (iii) φ(PQP) ≤ φ(P)1/pφ(Q)1/q for all projections P, Q\(\mathcal{M}\) and some positive numbers p = p(P, Q), q = q(P, Q) with 1/p+ 1/q = 1, p ≠ 2. Corollary: for a positive normal functional φ on \(\mathcal{M}\) the following conditions are equivalent: (i) φ is tracial; (ii) φ(A + A*) ≤ 2φ(∣A*∣) for all A\(\mathcal{M}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Abed, “An inequality for projections and convex functions,” Lobachevskii J. Math. 39 (9), 1287–1292 (2018).

    Article  MathSciNet  Google Scholar 

  2. A. M. Bikchentaev, “Commutativity of projections and characterization of traces on von Neumann algebras,” Sib. Math. J. 51, 971–977 (2010).

    Article  MathSciNet  Google Scholar 

  3. A. M. Bikchentaev, “Commutation of projections and trace characterization on von Neumann algebras. II,” Math. Notes 89, 461–471 (2011).

    Article  MathSciNet  Google Scholar 

  4. A. M. Bikchentaev, “Commutation of projections and characterization of traces on von Neumann algebras. III,” Int. J. Theor. Phys. 54, 4482–4493 (2015).

    Article  MathSciNet  Google Scholar 

  5. S. Sakai, C*-algebras and W*-algebras, Vol. 60 of Ergeb. Mat. Grenzgeb. (Springer, New York, Heidelberg, Berlin, 1971).

    Google Scholar 

  6. D. Deckard and C. Pearcy, “On matrices over ring of continuous complex valued functions on a Stonian space,” Proc. Am. Math. Soc. 14, 322–328 (1963).

    Article  MathSciNet  Google Scholar 

  7. M. Takesaki, Theory of Operator Algebras (Springer, Berlin, 1979). Vol. 1.

    Book  Google Scholar 

  8. M. Reed and B. Simon, Methods of Modern Mathematical Physics. 1. Functional Analysis (Mir, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  9. S. C. Arora and J. K. Thukral, “M*-Paranormal operators,” Glas. Math., Ser. III 22, 123–129 (1987).

    MathSciNet  MATH  Google Scholar 

  10. C. S. Kubrusly, Hilbert Space Operators. A Problem Solving Approach (Birkhaüser, Boston, MA, 2003).

    Book  Google Scholar 

  11. L. T. Gardner, “An inequality characterizes the trace,” Canad. J. Math. 31, 1322–1328 (1979).

    Article  MathSciNet  Google Scholar 

  12. O. E. Tikhonov, “Subadditivity inequalities in von Neumann algebras and characterization of tracial functionals,” Positivity 9, 259–264 (2005).

    Article  MathSciNet  Google Scholar 

  13. C. A. Akemann, J. Anderson, and G. K. Pedersen, “Triangle inequalities in operator algebras,” Linear Multilinear Algebra 11, 167–178 (1982).

    Article  MathSciNet  Google Scholar 

  14. D. Petz and J. Zemánek, “Characterizations of the trace,” Linear Algebra Appl. 111, 43–52 (1988).

    Article  MathSciNet  Google Scholar 

  15. A. M. Bikchentaev and O. E. Tikhonov, “Characterization of the trace by Young’s inequality,” J. Ineq. Pure Appl. Math. 6, 49 (2005).

    MathSciNet  MATH  Google Scholar 

  16. A. M. Bikchentaev and O. E. Tikhonov, “Characterization of the trace by monotonicity inequalities,” Linear Algebra Appl. 422, 274–278 (2007).

    Article  MathSciNet  Google Scholar 

  17. A. M. Bikchentaev, “The Peierls-Bogoliubov inequality in C*-algebras and characterization of tracial functionals,” Lobachevskii J. Math. 32 (3), 175–179 (2011).

    Article  MathSciNet  Google Scholar 

  18. A. M. Bikchentaev, “Commutativity of operators and characterization of traces on C*-algebras,” Dokl. Math. 87, 79–82 (2013).

    Article  MathSciNet  Google Scholar 

  19. A. M. Bikchentaev, “Inequality for a trace on a unital C*-algebra,” Math. Notes 99, 487–491 (2016).

    Article  MathSciNet  Google Scholar 

  20. A. M. Bikchentaev, “Differences of idempotents in C*-algebras,” Sib. Math. J. 58, 183–189 (2017).

    Article  MathSciNet  Google Scholar 

  21. A. M. Bikchentaev, “Differences of idempotents in C*-algebras and the quantum Hall effect,” Theor. Math. Phys. 195, 557–562 (2018).

    Article  MathSciNet  Google Scholar 

  22. H. T. Dinh and O. E. Tikhonov, “Weighted trace inequalities of monotonicity,” Lobachevskii J. Math. 26, 63–67 (2007).

    MathSciNet  MATH  Google Scholar 

  23. H. T. Dinh and O. E. Tikhonov, “Weighted monotonicity inequalities for traces on operator algebras,” Math. Notes 88, 177–182 (2010).

    Article  MathSciNet  Google Scholar 

  24. A. I. Stolyarov, O. E. Tikhonov, and A. N. Sherstnev, “Characterization of normal traces on von Neumann algebras by inequalities for the modulus,” Math. Notes 72, 411–416 (2002)

    Article  MathSciNet  Google Scholar 

  25. B. Blackadar, Operator Algebras. Theory of C*-Algebras and von Neumann Algebras, Vol. 122 of Encyclopaedia of Mathematical Sciences (Springer, Berlin, 2006).

    MATH  Google Scholar 

Download references

Funding

This work was supported by the subsidy allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (1.9773.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. Bikchentaev or S. A. Abed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bikchentaev, A.M., Abed, S.A. Projections and Traces on von Neumann Algebras. Lobachevskii J Math 40, 1260–1267 (2019). https://doi.org/10.1134/S1995080219090051

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995080219090051

Keywords and phrases

Navigation