[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Something Old, Something New: Three Point Vortices on the Plane

  • Published:
Regular and Chaotic Dynamics Aims and scope Submit manuscript

Abstract

The classic problem of three point vortex motion on the plane is revisited by using the interior angles of the vortex triangle, \(\theta_{j}\), \(j=1,2,3\), as the key system variables instead of the lengths of the triangle sides, \(s_{j}\), as has been used classically. Similar to the classic approach, the relative vortex motion can be represented in a phase space, with the topology of the level curves characterizing the motion. In contrast to the classic approach, the alternate formulation gives a compact, consistent phase space representation and facilitates comparisons of vortex motion in a co-moving frame. This alternate formulation is used to explore the vortex behavior in the two canonical cases of equal vortex strength magnitudes, \(\Gamma_{1}=\Gamma_{2}=\Gamma_{3}\) and \(\Gamma_{1}=\Gamma_{2}=-\Gamma_{3}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Aref, H., Motion of Three Vortices, Phys. Fluids, 1979, vol. 22, no. 3, pp. 393–400.

    Article  Google Scholar 

  2. Aref, H., Addendum: “Three-Vortex Motion with Zero Total Circulation”, [Z. Angew. Math. Phys., 1989, vol. 40, no. 4, pp. 473–494] by N. Rott, Z. Angew. Math. Phys., 1989, vol. 40, no. 4, pp. 495–500.

    Article  MathSciNet  Google Scholar 

  3. Aref, H., A Transformation of the Point Vortex Equations, Phys. Fluids, 2002, vol. 14, pp. 2395–2401.

    Article  MathSciNet  Google Scholar 

  4. Aref, H., Point Vortex Dynamics: A Classical Mathematics Playground, J. Math. Phys., 2007, vol. 48, no. 6, 065401, 23 pp.

    Article  MathSciNet  Google Scholar 

  5. Aref, H., Stability of Relative Equilibria of Three Vortices, Phys. Fluids, 2009, vol. 21, no. 9, 094101, 22 pp.

    Article  Google Scholar 

  6. Aref, H., Rott, N., and Thomann, H., Gröbli’s Solution of the Three-Vortex Problem, Annu. Rev. Fluid Mech., 1992, vol. 24, pp. 1–20.

    Article  Google Scholar 

  7. Borisov, A. V. and Lebedev, V. G., Dynamics of Three Vortices on a Plane and a Sphere: 2. General Compact Case, Regul. Chaotic Dyn., 1998, vol. 3, no. 2, pp. 99–114.

    Article  MathSciNet  Google Scholar 

  8. Borisov, A. V. and Pavlov, A. E., Dynamics and Statics of Vortices on a Plane and a Sphere: 1, Regul. Chaotic Dyn., 1998, vol. 3, no. 1, pp. 28–38.

    Article  MathSciNet  Google Scholar 

  9. Coxeter, H. S. M., Introduction to Geometry, 2nd ed., New York: Wiley, 1989.

    Google Scholar 

  10. Gröbli, W., Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden, Vierteljschr. Naturf. Ges. Zürich, 1877, vol. 22, pp. 37–81, 129–165.

    MATH  Google Scholar 

  11. Kimura, Y., Similarity Solution of Two-Dimensional Point Vortices, J. Phys. Soc. Japan, 1987, vol. 56, no. 6, pp. 2024–2030.

    Article  MathSciNet  Google Scholar 

  12. Krishnamurthy, V. S., Aref, H., and Stremler, M. A., Evolving Geometry of a Vortex Triangle, Phys. Rev. Fluids, 2018, vol. 3, no. 2, 024702, 17 pp.

    Article  Google Scholar 

  13. Krishnamurthy, V. S. and Stremler, M. A., Finite-time Collapse of Three Point Vortices in the Plane, Regul. Chaotic Dyn., 2018, vol. 23, no. 5, pp. 530–550.

    Article  MathSciNet  Google Scholar 

  14. Makarov, V. G., Group Scattering of Point Vortices on an Unbounded Plane, J. Fluid Mech., 2021, vol. 911, A24, 23 pp.

    Article  MathSciNet  Google Scholar 

  15. Newton, P. K., The \(N\)-Vortex Problem: Analytical Techniques, Appl. Math. Sci., vol. 145, New York: Springer, 2001.

    Book  Google Scholar 

  16. Novikov, E. A., Dynamics and Statistics of a System of Vortices, JETP, 1975, vol. 41, no. 5, pp. 937–943; see also: Zh. Èksper. Teoret. Fiz., 1975, vol. 68, no. 5, pp. 1868-1882.

    Google Scholar 

  17. Novikov, E. A. and Sedov, Yu. B., Vortex Collapse, JETP, 1979, vol. 50, no. 2, pp. 297–301; see also: Zh. Èksper. Teoret. Fiz., 1979, vol. 77, no. 2, pp. 588-597.

    Google Scholar 

  18. Synge, J. L., On the Motion of Three Vortices, Canad. J. Math., 1949, vol. 1, pp. 257–270.

    Article  MathSciNet  Google Scholar 

  19. van Heijst, G. J. F., Kloosterziel, R. C., and Williams, C. W. M., Laboratory Experiments on the Tripolar Vortex in a Rotating Fluid, J. Fluid Mech., 1991, vol. 225, pp. 301–331.

    Article  Google Scholar 

  20. von Helmholtz, H., Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 1858, vol. 55, pp. 25–55.

    MathSciNet  Google Scholar 

  21. Wang, M. and Hemati, M. S., Detecting Exotic Wakes with Hydrodynamic Sensors, Theor. Comput. Fluid Dyn., 2019, vol. 33, no. 3–4, pp. 235–254.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Stremler.

Ethics declarations

The author declares that he has no conflicts of interest.

Additional information

MSC2010

01-02

37E35

70F07

70H06

76B47

76-03

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stremler, M.A. Something Old, Something New: Three Point Vortices on the Plane. Regul. Chaot. Dyn. 26, 482–504 (2021). https://doi.org/10.1134/S1560354721050038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1560354721050038

Keywords

Navigation