Abstract
The classic problem of three point vortex motion on the plane is revisited by using the interior angles of the vortex triangle, \(\theta_{j}\), \(j=1,2,3\), as the key system variables instead of the lengths of the triangle sides, \(s_{j}\), as has been used classically. Similar to the classic approach, the relative vortex motion can be represented in a phase space, with the topology of the level curves characterizing the motion. In contrast to the classic approach, the alternate formulation gives a compact, consistent phase space representation and facilitates comparisons of vortex motion in a co-moving frame. This alternate formulation is used to explore the vortex behavior in the two canonical cases of equal vortex strength magnitudes, \(\Gamma_{1}=\Gamma_{2}=\Gamma_{3}\) and \(\Gamma_{1}=\Gamma_{2}=-\Gamma_{3}\).
Similar content being viewed by others
References
Aref, H., Motion of Three Vortices, Phys. Fluids, 1979, vol. 22, no. 3, pp. 393–400.
Aref, H., Addendum: “Three-Vortex Motion with Zero Total Circulation”, [Z. Angew. Math. Phys., 1989, vol. 40, no. 4, pp. 473–494] by N. Rott, Z. Angew. Math. Phys., 1989, vol. 40, no. 4, pp. 495–500.
Aref, H., A Transformation of the Point Vortex Equations, Phys. Fluids, 2002, vol. 14, pp. 2395–2401.
Aref, H., Point Vortex Dynamics: A Classical Mathematics Playground, J. Math. Phys., 2007, vol. 48, no. 6, 065401, 23 pp.
Aref, H., Stability of Relative Equilibria of Three Vortices, Phys. Fluids, 2009, vol. 21, no. 9, 094101, 22 pp.
Aref, H., Rott, N., and Thomann, H., Gröbli’s Solution of the Three-Vortex Problem, Annu. Rev. Fluid Mech., 1992, vol. 24, pp. 1–20.
Borisov, A. V. and Lebedev, V. G., Dynamics of Three Vortices on a Plane and a Sphere: 2. General Compact Case, Regul. Chaotic Dyn., 1998, vol. 3, no. 2, pp. 99–114.
Borisov, A. V. and Pavlov, A. E., Dynamics and Statics of Vortices on a Plane and a Sphere: 1, Regul. Chaotic Dyn., 1998, vol. 3, no. 1, pp. 28–38.
Coxeter, H. S. M., Introduction to Geometry, 2nd ed., New York: Wiley, 1989.
Gröbli, W., Spezielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden, Vierteljschr. Naturf. Ges. Zürich, 1877, vol. 22, pp. 37–81, 129–165.
Kimura, Y., Similarity Solution of Two-Dimensional Point Vortices, J. Phys. Soc. Japan, 1987, vol. 56, no. 6, pp. 2024–2030.
Krishnamurthy, V. S., Aref, H., and Stremler, M. A., Evolving Geometry of a Vortex Triangle, Phys. Rev. Fluids, 2018, vol. 3, no. 2, 024702, 17 pp.
Krishnamurthy, V. S. and Stremler, M. A., Finite-time Collapse of Three Point Vortices in the Plane, Regul. Chaotic Dyn., 2018, vol. 23, no. 5, pp. 530–550.
Makarov, V. G., Group Scattering of Point Vortices on an Unbounded Plane, J. Fluid Mech., 2021, vol. 911, A24, 23 pp.
Newton, P. K., The \(N\)-Vortex Problem: Analytical Techniques, Appl. Math. Sci., vol. 145, New York: Springer, 2001.
Novikov, E. A., Dynamics and Statistics of a System of Vortices, JETP, 1975, vol. 41, no. 5, pp. 937–943; see also: Zh. Èksper. Teoret. Fiz., 1975, vol. 68, no. 5, pp. 1868-1882.
Novikov, E. A. and Sedov, Yu. B., Vortex Collapse, JETP, 1979, vol. 50, no. 2, pp. 297–301; see also: Zh. Èksper. Teoret. Fiz., 1979, vol. 77, no. 2, pp. 588-597.
Synge, J. L., On the Motion of Three Vortices, Canad. J. Math., 1949, vol. 1, pp. 257–270.
van Heijst, G. J. F., Kloosterziel, R. C., and Williams, C. W. M., Laboratory Experiments on the Tripolar Vortex in a Rotating Fluid, J. Fluid Mech., 1991, vol. 225, pp. 301–331.
von Helmholtz, H., Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., 1858, vol. 55, pp. 25–55.
Wang, M. and Hemati, M. S., Detecting Exotic Wakes with Hydrodynamic Sensors, Theor. Comput. Fluid Dyn., 2019, vol. 33, no. 3–4, pp. 235–254.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
The author declares that he has no conflicts of interest.
Additional information
MSC2010
01-02
37E35
70F07
70H06
76B47
76-03
Rights and permissions
About this article
Cite this article
Stremler, M.A. Something Old, Something New: Three Point Vortices on the Plane. Regul. Chaot. Dyn. 26, 482–504 (2021). https://doi.org/10.1134/S1560354721050038
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1560354721050038