[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Detection and Segmentation of Cracks in Weld Images Using ANFIS Classification Method

  • OPTICAL METHODS
  • Published:
Russian Journal of Nondestructive Testing Aims and scope Submit manuscript

Abstract

This paper proposes the detection and classifications of weld images for crack detection using image processing techniques. The proposed method consists of preprocessing stage, feature extraction stage, classification stage and crack region segmentation regions. The image enhancement method is used as preprocessing stage and texture and statistical features are extracted from the enhanced weld images. These computed features are then classified into “Excess weld”, “Good weld”, “No weld” and “Undercut weld”, using Adaptive Neuro Fuzzy Inference System (ANFIS) classification method. This proposed method is analyzed in terms of sensitivity, specificity, accuracy, positive predictive value, negative predictive value and precision. The simulation results of the proposed method are compared with other state of the art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Sizyakin, R., Voronin, V., Gapon, N., Zelensky, A., and Pižurica, A., Automatic detection of welding defects using the convolutional neural network, Proc. SPIE, 2019, vol. 11061.

  2. Broberg, P., Surface crack detection in welds using thermography, NDT&E Int., 2013, vol. 57, pp. 69–73.

    Article  Google Scholar 

  3. Liu, Z., Lu, G., Liu, X., Jiang, X., and Lodewijks, G., Image processing algorithms for crack detection in welded structures via pulsed eddy current thermal imaging, IEEE Instrum. Meas. Mag., 2017, vol. 20, no. 4, pp. 34–44.

    Article  Google Scholar 

  4. Wang, G., Tse, P.W., and Yuan, M., Automatic internal crack detection from a sequence of infrared images with a triple-threshold Canny edge detector, Meas. Sci. Technol., 2018, vol. 29, art. ID 025403.

    Article  Google Scholar 

  5. Pan, M., He, Y., and Chen, L., Eddy Current Thermography Nondestructive Testing, Beijing: National Defense Industry Press, 2013, pp. 24–26.

    Google Scholar 

  6. Shi, Q. and Wu, K., Image segmentation algorithm for wheel set measuring based on region growing, Proc. SPIE, 2011, vol. 8200.

  7. Adhikari, R.S., Moselhi, O., and Bagchi, A., Image-based retrieval of concrete crack properties for bridge inspection, Autom. Constr., 2014, vol. 39, pp. 180–194.

    Article  Google Scholar 

  8. Alam, S.Y., Loukili, A., Grondin, F., and Rozière, E., Use of the digital image correlation and acoustic emission technique to study the effect of structural size on cracking of reinforced concrete, Eng. Fract. Mech., 2015, vol. 143, pp. 17–31.

    Article  Google Scholar 

  9. Iyer, S. and Sinha, S.K., A robust approach for automatic detection and segmentation of cracks in underground pipeline images, Image Vision Comput., 2005, vol. 23, no. 10, pp. 931–933.

    Article  Google Scholar 

  10. Salman, M., Mathavan, S., Kamal, K., and Rahman, M., Pavement crack detection using the Gabor filter, Proc. 16th Int. IEEE Annual Conf. on Intelligent Transportation Systems, Piscataway, NJ: Inst. Electr. Electron. Eng., 2013, pp. 2039–2044.

  11. Guo, W., Qu, H., and Liang, L., WDXI: The dataset of X-ray image for weld defects, Proc. 14th Int. Conf. on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), Huangshan, 2018, pp. 1051–1055.

  12. Mohana, A. and Poobal, S., Crack detection using image processing: A critical review and analysis, Alexandria Eng. J., 2018, vol. 57, no. 2, pp. 787–798.

    Article  Google Scholar 

  13. Wu, Y., et al., Weld crack detection based on region electromagnetic sensing thermography, IEEE Sens. J., 2019, vol. 19, no. 2, pp. 751–762.

    Article  Google Scholar 

  14. Zhao, J., Gao, B., Woo, W.L., Qiu, F., and Tian, G.Y., Crack evaluation based on novel circle-ferrite induction thermography, IEEE Sens. J., 2017, vol. 17, no. 17, pp. 5637–5645.

    Article  CAS  Google Scholar 

  15. Bhattad, N.M. and Patil, S.S., BR Patent 1872/MUM/2013, 2015.

  16. Yang, R., He, Y., Gao, B., Tian, G.Y., and Peng, J., Lateral heat conduction based eddy current thermography for detection of parallel cracks and rail tread oblique cracks, Measurement, 2015, vol. 66, pp. 54–61.

    Article  Google Scholar 

  17. He, Y., Tian, G.Y., Pan, M., Chen, D., and Zhang, H., An investigation into eddy current pulsed thermography for detection of corrosion blister, Corros. Sci., 2014, vol. 78, pp. 1–6.

    Article  CAS  Google Scholar 

  18. Liu, Z., Lu, G., Liu, X., Jiang, X., and Lodewijks, G., Image processing algorithms for crack detection in welded structures via pulsed eddy current thermal imaging, IEEE Instrum. Meas. Mag., 2017, vol. 20 no. 4, pp. 34–44.

    Article  Google Scholar 

  19. Xu, C., Xie, J., Chen, G., and Huang, W., An infrared thermal image processing framework based on superpixel algorithm to detect cracks on metal surface, Infrared Phys. Technol., 2014, vol. 67 no. 4, pp. 266–272.

    Article  CAS  Google Scholar 

  20. Zhang, Y., The design of glass crack detection system based on image pre-processing technology, Proc. 2014 IEEE 7th Joint Int. Information Technology and Artificial Intelligence Conf. (ITAIC 2014), Piscataway, NJ: Inst. Electr. Electron. Eng., 2014, pp. 39–42.

  21. Salman, M., Mathavan, S., Kamal, K., and Rahman, M., Pavement crack detection using the Gabor filter, Proc. 16th Int. IEEE Conf. on Intelligent Transportation Systems (ITSC 2013), Piscataway, NJ: Inst. Electr. Electron. Eng., 2013, pp. 2039–2044.

  22. Wang, P. and Huang, H., Comparison analysis on present image-based crack detection methods in concrete structures, Proc. 2010 3rd Int. Congr. on Image and Signal Processing, Piscataway, NJ: Inst. Electr. Electron. Eng., 2010, vol. 5, pp. 2530–2533.

  23. Melin, P. and Castillo, O., Time series prediction using ensembles of ANFIS models with genetic optimization of interval type-2 and type-1 fuzzy integrators, Int. J. Hybrid Intell. Syst., 2014, vol. 11, no. 3, pp. 1–10.

    Google Scholar 

  24. Soto, J., Melin, P., and Castillo, O., A new approach for time series prediction using ensembles of ANFIS models with interval type-2 and type-1 fuzzy integrators, Proc. 2013 IEEE Conf. on Computational Intelligence for Financial Engineering and Economics (CIFEr), Singapore, 2013, pp. 68–73.

  25. Aguilar, L., Melin, P., and Castillo, O., Intelligent control of a stepping motor drive using a hybrid neuro-fuzzy ANFIS approach, Appl. Soft Comput., 2003, vol. 3, no. 3, pp. 209–219.

    Article  Google Scholar 

  26. Castillo, O. and Melin, P., Intelligent adaptive model-based control of robotic dynamic systems with a hybrid fuzzy-neural approach, Appl. Soft Comput., 2003, vol. 3, no. 4, pp. 363-378.

    Article  Google Scholar 

  27. Melin, P. and Castillo, O., Adaptive intelligent control of aircraft systems with a hybrid approach combining neural networks, fuzzy logic and fractal theory, Appl. Soft Comput., 20032003, vol. 3, no. 4, pp. 353–362.

  28. Zhu, H., Xu, Y., Cheng, Y., et al., Landform classification based on optimal texture feature extraction from DEM data in Shandong Hilly area, China, Front. Earth Sci., 2019, vol. 13, pp. 641–655.

    Article  CAS  Google Scholar 

  29. Deotale, N.T. and Sarode, T.K., Fabric defect detection adopting combined GLCM, Gabor Wavelet features and random decision forest, 3D Res., 2019, vol. 10, p. 5.

  30. Pandiselvi, T. and Maheswaran, R., Efficient framework for identifying, locating, detecting and classifying MRI brain tumor in MRI images, J. Med. Syst., 2019, vol. 43, p. 189.

    Article  CAS  Google Scholar 

  31. Sainudiin, R. and Teng, G., Minimum distance histograms with universal performance guarantees, Jpn. J. Stat. Data Sci., 2019, vol. 2, pp. 507–527.

    Article  Google Scholar 

  32. Campos, G., Mastelini, S., Aguiar, G., et al., Machine learning hyperparameter selection for contrast limited adaptive histogram equalization, EURASIP J. Image Video Process., 2019, vol. 2019, p. 59.

    Article  Google Scholar 

  33. Li, J., Hou, W., Han, Y., and Yin, J., Crack detection in tread area based on analysis of multi-scale singular area, in Computer Vision, Commun. Comput. Inf. Sci. vol. 547, Zha, H., Chen, X., Wang, L., and Miao, Q., Eds., Berlin: Springer, 2015.

  34. Zhu, Y., Liu, W.-Y., Yuan, Y., Liu, F.-C., and Wang, J.-J., A defect extraction and segmentation method for radial tire X-ray image, J. Optoelectron. Laser, 2010, vol. 21, no. 5, pp. 758–761.

    Google Scholar 

  35. Ahn, B., Choi, D.-G., Park, J., and Kweon, I.S., Real-time head pose estimation using multi-task deep neural network, Rob. Auton. Syst., 2018, vol. 103, pp. 1–12.

    Article  Google Scholar 

  36. Baniukiewicz, P., Automated defect recognition and identification in digital radiography, J. Nondestr. Eval., 2014, vol. 33, no. 3, pp. 327–334.

    Article  Google Scholar 

  37. Feng, S., Zhou, H., and Dong, H., Using deep neural network with small dataset to predict material defects, Mater. Des., 2019, vol. 162, pp. 300–310.

    Article  Google Scholar 

  38. Hou, W., Wei, Y., Guo, J., and Jin, Y., Automatic detection of welding defects using deep neural network, J. Phys.: Conf. Ser., 2018, vol. 933, art. ID 012006.

    Google Scholar 

  39. Krizhevsky, A., Sutskever, I., and Hinton, G.E., ImageNet classification with deep convolutional neural networks, Commun. ACM, 2017, vol. 60, no. 6, pp. 84–90.

    Article  Google Scholar 

  40. Liao, T.W., Improving the accuracy of computer-aided radiographic weld inspection by feature selection, NDT&E Int., 2009, vol. 42, no. 4, pp. 229–239.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Sivakumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohana Sundari, L., Sivakumar, P. Detection and Segmentation of Cracks in Weld Images Using ANFIS Classification Method. Russ J Nondestruct Test 57, 72–82 (2021). https://doi.org/10.1134/S1061830921300033

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061830921300033

Keywords:

Navigation