Abstract
Electronic technologies that can operate in harsh radiation environments are important in space, nuclear and avionic applications. However, radiation-hardened (rad-hard) integrated circuits often require additional processing and more complex configurations than conventional systems. Here we review the development of low-power, rad-hard electronics, examining the underlying phenomena of radiation-induced electronic failure and the design methodologies available with conventional complementary metal–oxide–semiconductor (CMOS) technologies to mitigate the problem. We also explore the potential use and applications of various emerging memory technologies in rad-hard electronics.
Similar content being viewed by others
References
Evans, D. E., Pitts, D. E. & Kraus, G. L. Venus and Mars Nominal Natural Environment for Advanced Manned Planetary Mission Programs Techincal Report NASA SP-3016 (NASA, 1965).
Bagenal, F. et al. Plasma conditions at Europa’s orbit. Icarus 261, 1–13 (2015).
Cannon, P. Extreme Space Weather: Impacts on Engineered Systems and Infrastructures (Royal Academy of Engineering, 2013); https://www.raeng.org.uk/publications/reports/space-weather-full-report
Bourdarie, S., Friedel, R. H. W., Fennell, J., Kanekal, S. & Cayton, T. E. Radiation belt representation of the energetic electron environment: model and data synthesis using the Salammbô radiation belt transport code and Los Alamos geosynchronous and GPS energetic particle data. Space Weather 3, S04S01 (2005).
Morley, S. K. et al. Energetic particle data from the global positioning system constellation. Space Weather 15, 283–289 (2017).
Pettegrew, R., Easton, J., Struk, P. & Anderson, E. In-flight manual electronics repair for deep-space missions. In 2007 IEEE Aerospace Conference 1–16 (IEEE, 2007); https://doi.org/10.1109/AERO.2007.35272
Michalak, S. E. et al. Assessment of the impact of cosmic-ray-induced neutrons on hardware in the Roadrunner supercomputer. IEEE Trans. Device Mater. Reliab. 12, 445–454 (2012).
Nidhin, T., Bhattacharyya, A., Behera, R., Jayanthi, T. & Velusamy, K. Understanding radiation effects in SRAM-based field programmable gate arrays for implementing instrumentation and control systems of nuclear power plants. Nucl. Eng. Technol. 49, 1589–1599 (2017).
Brugger, M. Radiation damage to electronics at the LHC. In IPAC 2012—International Particle Accelerator Conference 2012 3734–3736 (IEEE, 2012).
International Technology Roadmap for Semiconductors 2.0: Executive Report Technical Report (ITRS, 2015).
Baumann, R. & Kruckmeyer, K. Radiation Handbook for Electronics (Texas Instruments, 2019).
Chatzikyriakou, E., Morgan, K. & de Groot, C. H. K. Total ionizing dose hardened and mitigation strategies in deep submicrometer CMOS and beyond. IEEE Trans. Electron Devices 65, 808–819 (2018).
Schwank, J. R. et al. Radiation effects in MOS oxides. IEEE Trans. Nucl. Sci. 55, 1833–1853 (2008).
Khanna, V. K. Extreme-Temperature and Harsh-Environment Electronics: Physics, Technology and Applications (IOP, 2017); https://iopscience.iop.org/book/978-0-7503-1155-7
Srour, J. R. & Palko, J. W. Displacement damage effects in irradiated semiconductor devices. IEEE Trans. Nucl. Sci. 60, 1740–1766 (2013).
Monteiro, W. A. (ed.) Radiation Effects in Materials (InTech, 2016); http://www.intechopen.com/books/radiation-effects-in-materials
Raphael, R. N. S. et al. Overview about radiation-matter interaction mechanisms and mitigation techniques. In Proc. 3rd Brazilian Technology Symposium (eds Iano, Y. et al.) Vol. 1, 223–238 (Springer, 2019); https://doi.org/10.1007/978-3-319-93112-8_23
Lacoe, R. C. Improving integrated circuit performance through the application of hardness-by-design methodology. IEEE Trans. Nucl. Sci. 55, 1903–1925 (2008).
Faccio, F., Michelis, S., Cornale, D., Paccagnella, A. & Gerardin, S. Radiation-induced short channel (RISCE) and narrow channel (RINCE) effects in 65 and 130 nm MOSFETs. IEEE Trans. Nucl. Sci. 62, 2933–2940 (2015).
Gambles, J. W., Maki, G. & Whitaker, S. Radiation hardening by design. Int. J. Electron. 95, 11–26 (2008).
Holman, W. Radiation-tolerant design for high performance mixed-signal circuits. Int. J. High Speed Electron. Syst. 14, 353–366 (2004).
Faccio, F. et al. Influence of LDD spacers and H+ transport on the total-ionizing-dose response of 65-nm MOSFETs irradiated to ultrahigh doses. IEEE Trans. Nucl. Sci. 65, 164–174 (2017).
Faccio, F. & Cervelli, G. Radiation-induced edge effects in deep submicron CMOS transistors. IEEE Trans. Nucl. Sci. 52, 2413–2420 (2005).
Baoping, H., Zhibin, Y., Zujun, W. & Shaoyan, H. Irradiation and anneal response of shallow trench isolation oxides in 0.18 μm CMOS technology. Sci. J. Microelectron. 4, 5 (2014).
Gonella, L. et al. Total ionizing dose effects in 130-nm commercial CMOS technologies for HEP experiments. Nucl. Instrum. Methods Phys. Res. A 582, 750–754 (2007).
Bucher, M. et al. Total ionizing dose effects on analog performance of 65 nm bulk CMOS with enclosed-gate and standard layout. In 2018 IEEE International Conference on Microelectronic Test Structures (ICMTS) 166–170 (IEEE, 2018).
Giraldo, A., Paccagnella, A. & Minzoni, A. Aspect ratio calculation in n-channel MOSFETs with a gate-enclosed layout. Solid State Electron. 44, 981–989 (2000).
Narasimham, B., Gambles, J. W., Shuler, R. L., Bhuva, B. L. & Massengill, L. W. Quantifying the effect of guard rings and guard drains in mitigating charge collection and charge spread. IEEE Trans. Nucl. Sci. 55, 3456–3460 (2008).
Chen, R. et al. Single-event multiple transients in conventional and guard-ring hardened inverter chains under pulsed laser and heavy-ion irradiation. IEEE Trans. Nucl. Sci. 64, 2511–2518 (2017).
Ruano, O., Reviriego, P. & Maestro, J. Automatic insertion of selective TMR for SEU mitigation. In 2008 European Conference on Radiation and Its Effects on Components and Systems 284–287 (IEEE, 2008).
Hasanbegović, A. & Aunet, S. Heavy ion characterization of temporal-, dual- and triple redundant flip-flops across a wide supply voltage range in a 65 nm bulk CMOS process. IEEE Trans. Nucl. Sci. 63, 2962–2970 (2016).
Bhuva, B. et al. Multi-cell soft errors at advanced technology nodes. IEEE Trans. Nucl. Sci. 62, 2585–2591 (2015).
Toro, D. G., Arzel, M., Seguin, F. & Jézéquel, M. Soft error detection and correction technique for radiation hardening based on C-element and BICS. IEEE Trans. Circuits Syst. II 61, 952–956 (2014).
Schmidt, R., García-Ortiz, A. & Fey, G. Temporal redundancy latch-based architecture for soft error mitigation. In 2017 IEEE 23rd International Symposium on On-Line Testing and Robust System Design (IOLTS) 240–243 (IEEE, 2017).
Calin, T., Nicolaidis, M. & Velazco, R. Upset hardened memory design for submicron CMOS technology. IEEE Trans. Nucl. Sci. 43, 2874–2878 (1996).
Zanchi, A., Buchner, S., Hafer, C., Hisano, S. & Kerwin, D. B. Investigation and mitigation of analog SET on a bandgap reference in triple-well CMOS using pulsed laser techniques. IEEE Trans. Nucl. Sci. 58, 2570–2577 (2011).
Uemura, T., Tanabe, R., Tosaka, Y. & Satoh, S. Using low pass filters in mitigation techniques against single-event transients in 45nm technology LSIs. In 2008 14th IEEE International On-Line Testing Symposium 117–122 (IEEE, 2008).
Kelly, A. T. et al. Differential analog layout for improved ASET tolerance. IEEE Trans. Nucl. Sci. 54, 2053–2059 (2007).
Oh, N., Shirvani, P. P. & McCluskey, E. J. Control-flow checking by software signatures. IEEE Trans. Reliab. 51, 111–122 (2002).
Zhang, Y. et al. Design and verification of SRAM self-detection repair based on ECC and BISR circuit. In 2019 IEEE 26th International Symposium on Physical and Failure Analysis of Integrated Circuits (IPFA) 1–5 (IEEE, 2019).
Mavis, D. et al. Multiple bit upsets and error mitigation in ultra-deep submicron SRAMS. IEEE Trans. Nucl. Sci. 55, 3288–3294 (2008).
Gasiot, G., Giot, D. & Roche, P. Multiple cell upsets as the key contribution to the total SER of 65 nm CMOS SRAMs and its dependence on well engineering. IEEE Trans. Nucl. Sci. 54, 2468–2473 (2007).
Rezgui, S. et al. Complex upset mitigation applied to a re-configurable embedded processor. IEEE Trans. Nucl. Sci. 52, 2468–2474 (2005).
Hughes, H. et al. Total ionizing dose radiation effects on 14 nm FinFET and SOI UTBB technologies. In 2015 IEEE Radiation Effects Data Workshop (REDW) 1–6 (IEEE, 2015).
Simoen, E. et al. Radiation effects in advanced multiple gate and silicon-on-insulator transistors. IEEE Trans. Nucl. Sci. 60, 1970–1991 (2013).
Put, S. et al. Influence of back-gate bias and process conditions on the gamma degradation of the transconductance of MuGFETs. IEEE Trans. Nucl. Sci. 57, 1771–1776 (2010).
Liu, R. et al. Single event transient and TID study in 28 nm UTBB FDSOI technology. IEEE Trans. Nucl. Sci. 64, 113–118 (2016).
Gaillardin, M. et al. Impact of SOI substrate on the radiation response of ultrathin transistors down to the 20 nm node. IEEE Trans. Nucl. Sci. 60, 2583–2589 (2013).
Gaillardin, M. et al. Total ionizing dose effects mitigation strategy for nanoscaled FDSOI technologies. IEEE Trans. Nucl. Sci. 61, 3023–3029 (2014).
King, M. P. et al. Analysis of TID process, geometry, and bias condition dependence in 14-nm FinFETs and implications for RF and SRAM performance. IEEE Trans. Nucl. Sci. 64, 285–292 (2016).
Nsengiyumva, P. et al. A comparison of the SEU response of planar and FinFET D flip-flops at advanced technology nodes. IEEE Trans. Nucl. Sci. 63, 266–272 (2016).
Seifert, N. et al. Soft error susceptibilities of 22 nm tri-gate devices. IEEE Trans. Nucl. Sci. 59, 2666–2673 (2012).
Salahuddin, S., Ni, K. & Datta, S. The era of hyper-scaling in electronics. Nat. Electron. 1, 442–450 (2018).
Guertin, S. M., Yang-Scharlotta, J., Blaisdell-Pijuan, P. & Some, R. Options for radiation tolerant high-performance memory. In 2017 17th European Conference on Radiation and Its Effects on Components and Systems (RADECS) 1–7 (IEEE, 2017).
Raine, M., Gaillardin, M., Lagutere, T., Duhamel, O. & Paillet, P. Estimation of the single-event upset sensitivity of advanced SOI SRAMs. IEEE Trans. Nucl. Sci. 65, 339–345 (2018).
Shiyanovskii, Y., Wolff, F. & Papachristou, C. SRAM cell design protected from SEU upsets. In 2008 14th IEEE International On-Line Testing Symposium 169–170 (IEEE, 2008).
Geppert, L. A static RAM says goodbye to data errors [radiation induced soft errors]. IEEE Spectr. 41, 16–17 (2004).
Roche, P., Jacquet, F., Caillat, C. & Schoellkopf, J.-P. An alpha immune and ultra low neutron SER high density SRAM. In Proc. 2004 IEEE International Reliability Physics Symposium 671–672 (IEEE, 2004).
Diehl, S., Ochoa, A., Dressendorfer, P., Koga, R. & Kolasinski, W. Error analysis and prevention of cosmic ion-induced soft errors in static CMOS RAMs. IEEE Trans. Nucl. Sci. 29, 2032–2039 (1982).
Takai, M. et al. Soft error susceptibility and immune structures in dynamic random access memories (DRAMs) investigated by nuclear microprobes. IEEE Trans. Nucl. Sci. 43, 696–704 (1996).
Bougerol, A. et al. Use of laser to explain heavy ion induced SEFIs in SDRAMs. IEEE Trans. Nucl. Sci. 57, 272–278 (2010).
Borucki, L., Schindlbeck, G. & Slayman, C. Impact of DRAM process technology on neutron-induced soft errors. In 2007 IEEE International Integrated Reliability Workshop Final Report 143–146 (IEEE, 2007).
Chen, D. et al. Heavy ion and proton-induced single event upset characteristics of a 3-D NAND flash memory. IEEE Trans. Nucl. Sci. 65, 19–26 (2018).
Zhao, C., Zhao, C. Z., Taylor, S. & Chalker, P. R. Review on non-volatile memory with high-k dielectrics: flash for generation beyond 32 nm. Materials 7, 5117–5145 (2014).
Bagatin, M. et al. Effects of heavy-ion irradiation on vertical 3-D NAND flash memories. IEEE Trans. Nucl. Sci. 65, 318–325 (2018).
Oldham, T. R. et al. SEE and TID characterization of an advanced commercial 2Gbit NAND flash nonvolatile memory. IEEE Trans. Nucl. Sci. 53, 3217–3222 (2006).
Baldi, L., Bez, R. & Sandhu, G. Emerging memories. Solid State Electron. 102, 2–11 (2014).
Lu, J. et al. Radiation effects on the magnetism and the spin dependent transport in magnetic materials and nanostructures for spintronic applications. J. Mater. Res. 30, 1430–1439 (2015).
Bhatti, S. et al. Spintronics based random access memory: a review. Mater. Today 20, 530–548 (2017).
Hirose, K., Kobayashi, D., Ito, T. & Endoh, T. Memory reliability of spintronic materials and devices for disaster-resilient computing against radiation-induced bit flips on the ground. Jpn. J. Appl. Phys. 56, 0802A5 (2017).
Stathopoulos, S. et al. Multibit memory operation of metal-oxide bi-layer memristors. Sci. Rep. 7, 17532 (2017).
Hickmott, T. W. Low-frequency negative resistance in thin anodic oxide films. J. Appl. Phys. 33, 2669–2682 (1962).
Yang, J. J. et al. Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429–433 (2008).
Zuloaga, S., Liu, R., Chen, P.-Y. & Yu, S. Scaling 2-layer RRAM cross-point array towards 10 nm node: a device-circuit co-design. In 2015 IEEE International Symposium on Circuits and Systems (ISCAS) 193–196 (IEEE, 2015); https://doi.org/10.1109/ISCAS.2015.7168603
Zhang, Z., Wu, Y., Wong, H.-S. P. & Wong, S. S. Nanometer-scale HfOx RRAM. IEEE Electron Device Lett. 34, 1005–1007 (2013).
Khiat, A., Ayliffe, P. & Prodromakis, T. High density crossbar arrays with sub-15 nm single cells via liftoff process only. Sci. Rep. 6, 32614 (2016).
Zhang, L. et al. Total ionizing dose (TID) effects on TaOx-based resistance change memory. IEEE Trans. Electron Devices 58, 2800–2804 (2011).
Liu, R., Mahalanabis, D., Barnaby, H. J. & Yu, S. Investigation of single-bit and multiple-bit upsets in oxide RRAM-based 1T1R and crossbar memory arrays. IEEE Trans. Nucl. Sci. 62, 2294–2301 (2015).
Ye, Z., Liu, R., Taggart, J. L., Barnaby, H. J. & Yu, S. Evaluation of radiation effects in RRAM-based neuromorphic computing system for inference. IEEE Trans. Nucl. Sci. 66, 97–103 (2019).
DeIonno, E., Looper, M. D., Osborn, J. V., Barnaby, H. J. & Tong, W. M. Radiation effects studies on thin film TiO2 memristor devices. In 2013 IEEE Aerospace Conference 1–8 (IEEE, 2013); https://doi.org/10.1109/AERO.2013.6497378
Agashe, K. et al. Effect of gamma irradiation on resistive switching of Al/TiO2/n+Si ReRAM. Nucl. Instrum. Methods Phys. Res. B 403, 38–44 (2017).
Dandamudi, P., Kozicki, M. N., Barnaby, H. J., Gonzalez-Velo, Y. & Holbert, K. E. Total ionizing dose tolerance of Ag-Ge40S60 based programmable metallization cells. IEEE Trans. Nucl. Sci. 61, 1726–1731 (2014).
Shaneyfelt, M. et al. Hardness variability in commercial technologies. IEEE Trans. Nucl. Sci. 41, 2536–2543 (1994).
Fang, R. et al. Total ionizing dose effect of γ-ray radiation on the switching characteristics and filament stability of HfOx resistive random access memory. Appl. Phys. Lett. 104, 183507 (2014).
Hughart, D. R. et al. Radiation-induced resistance changes in TaOx and TiO2 memristors. In 2014 IEEE Aerospace Conference 1–11 (IEEE, 2014); https://doi.org/10.1109/AERO.2014.6836465
Gonzalez-Velo, Y., Barnaby, H. J. & Kozicki, M. N. Review of radiation effects on ReRAM devices and technology. Semicond. Sci. Technol. 32, 083002 (2017).
Barnaby, H. J. et al. Impact of alpha particles on the electrical characteristics of TiO2 memristors. IEEE Trans. Nucl. Sci. 58, 2838–2844 (2011).
Yuan, F. et al. Total ionizing dose (TID) effects of γ ray radiation on switching behaviors of Ag/AlOx/Pt RRAM device. Nanoscale Res. Lett. 9, 452 (2014).
Wang, J. et al. A radiation-hardening Ta/Ta2O5-x/Al2O3/InGaZnO4 memristor for harsh electronics. Appl. Phys. Lett. 113, 122907 (2018).
Xia, Q. & Yang, J. J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 18, 309–323 (2019).
Prinzie, J. et al. An SRAM-based radiation monitor with dynamic voltage control in 0.18-μm CMOS technology. IEEE Trans. Nucl. Sci. 66, 282–289 (2018).
Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).
Valov, I. et al. Nanobatteries in redox-based resistive switches require extension of memristor theory. Nat. Commun. 4, 1771 (2013).
Tzouvadaki, I. et al. Label-free ultrasensitive memristive aptasensor. Nano Lett. 16, 4472–4476 (2016).
Vidiš, M. et al. Gasistor: a memristor based gas-triggered switch and gas sensor with memory. Appl. Phys. Lett. 115, 093504 (2019).
Nguyen, T.-N. & Shin, D. Statistical memristor-based temperature sensors without analog-to-digital conversion. In 2018 IEEE 7th Non-Volatile Memory Systems and Applications Symposium (NVMSA) 99–104 (IEEE, 2018); https://doi.org/10.1109/NVMSA.2018.00024
Zhang, C. et al. Bioinspired artificial sensory nerve based on Nafion memristor. Adv. Funct. Mater. 29, 1808783 (2019).
Bera, A. et al. A versatile light-switchable nanorod memory: wurtzite ZnO on perovskite SrTiO3. Adv. Funct. Mater. 23, 4977–4984 (2013).
Soni, M. & Dahiya, R. Soft eSkin: distributed touch sensing with harmonized energy and computing. Phil. Trans. R. Soc. A 378, 20190156 (2020).
Gao, Y., Yu, L., Yeo, J. C. & Lim, C. T. Flexible hybrid sensors for health monitoring: materials and mechanisms to render wearability. Adv. Mater. 32, 1902133 (2020).
Serb, A. et al. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 7, 12611 (2016).
Li, C. et al. Analogue signal and image processing with large memristor crossbars. Nat. Electron. 1, 52–59 (2018).
Jeong, Y. J., Lee, J., Moon, J., Shin, J. H. & Lu, W. D. K-means data clustering with memristor networks. Nano Lett. 18, 4447–4453 (2018).
Berco, D. & Shenp Ang, D. Recent progress in synaptic devices paving the way toward an artificial cognia retina for bionic and machine vision. Adv. Intell. Syst. 1, 1900003 (2019).
Acknowledgements
We acknowledge the support of EPSRC Programme Grant FORTE (EP/R024642/1), H2020-FETPROACT-2018-01 SYNCH, FWO (12P5319N), EU Horizon 2020 - RADSAGA (721624) and the RAEng Chair in Emerging Technologies (CiET1819/2/93).
Author information
Authors and Affiliations
Contributions
J.P., F.M.S., P.L. and T.P. conceived of this Review. J.P. and F.M.S. performed the literature analysis. J.P. and F.M.S. wrote the Review with input from all authors. All authors discussed and contributed to the final manuscript. T.P. took the lead on the structure of the Review and figures.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Electronics thanks Jin-Woo Ha and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Tables 1 and 2.
Rights and permissions
About this article
Cite this article
Prinzie, J., Simanjuntak, F.M., Leroux, P. et al. Low-power electronic technologies for harsh radiation environments. Nat Electron 4, 243–253 (2021). https://doi.org/10.1038/s41928-021-00562-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41928-021-00562-4
- Springer Nature Limited
This article is cited by
-
Neutron irradiation influence on high-power thyristor device under fusion environment
Nuclear Science and Techniques (2024)
-
Pure boron nitride nanotube thread-based woven textile for thermal neutron shielding with extreme thermal stability
Advanced Composites and Hybrid Materials (2024)
-
Design and Optimization of MOS Capacitor based Radiation Sensor for Space Applications
Arabian Journal for Science and Engineering (2024)
-
Spacesuit Textiles from Extreme Fabric Materials: Aromatic Amide Polymer and Boron Nitride Nanotube Composite Fiber for Neutron Shielding and Thermal Management
Advanced Fiber Materials (2024)
-
Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory
Nature Communications (2023)