Abstract
The focus of this chapter is on open-set recognition (OSR) problems in Sports Sciences. It introduces the OSR concept, and possible application scenarios are highlighted, including Sports video analysis based on event and action recognition. This chapter also overviews relevant studies in the OSR area. A few studies have been identified in the area of Sports Sciences, which opens opportunities for future work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bendale, A., & Boult, T. E. (2016). Towards open set deep networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1563–1572).
Boult, T. E., Cruz, S., Dhamija, A. R., Gunther, M., Henrydoss, J., & Scheirer, W. J. (2019, July). Learning and the unknown: Surveying steps toward open world recognition. In Proceedings of the AAAI conference on artificial intelligence (vol. 33, no. 1, pp. 9801–9807).
Burns, D., Boyer, P., Arrowsmith, C., & Whyne, C. (2022). Personalized activity recognition with deep triplet embeddings. Sensors, 22(14), 5222.
Cardoso, D. O., Gama, J., & França, F. M. (2017). Weightless neural networks for open set recognition. Machine Learning, 106(9), 1547–1567.
de Oliveira Werneck, R., Raveaux, R., Tabbone, S., & da Silva Torres, R. (2019). Learning cost function for graph classification with open-set methods. Pattern Recognition Letters, 128, 8–15.
Enholm, I. M., Papagiannidis, E., Mikalef, P., & Krogstie, J. (2021). Artificial intelligence and business value: A literature review. Information Systems Frontiers, 1–26.
Ganesh, Y., Sri Teja, A., Munnangi, S. K., & Rama Murthy, G. (2019, June). A novel framework for fine grained action recognition in soccer. In International work-conference on artificial neural networks (pp. 137–150). Springer.
Ge, Z., Demyanov, S., Chen, Z., & Garnavi, R. (2017). Generative openmax for multi-class open set classification. arXiv preprint arXiv:1707.07418.
Geng, C., Huang, S. J., & Chen, S. (2020). Recent advances in open set recognition: A survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(10), 3614–3631.
Goes, F. R., Meerhoff, L. A., Bueno, M. J. O., Rodrigues, D. M., Moura, F. A., Brink, M. S., et al. (2021). Unlocking the potential of big data to support tactical performance analysis in professional soccer: A systematic review. European Journal of Sport Science, 21(4), 481–496.
Liang, S., Li, Y., & Srikant, R. (2017). Enhancing the reliability of out-of-distribution image detection in neural networks. arXiv preprint arXiv:1706.02690.
Mendes Júnior, P. R., De Souza, R. M., Werneck, R. D. O., Stein, B. V., Pazinato, D. V., de Almeida, W. R., et al. (2017). Nearest neighbors distance ratio open-set classifier. Machine Learning, 106(3), 359–386.
Naik, B. T., Hashmi, M. F., & Bokde, N. D. (2022). A comprehensive review of computer vision in sports: Open issues, future trends and research directions. Applied Sciences, 12(9), 4429.
Neira, M. A. C., Júnior, P. R. M., Rocha, A., & Torres, R. D. S. (2018). Data-fusion techniques for open-set recognition problems. IEEE Access, 6, 21242–21265.
Oza, P., & Patel, V. M. (2019). C2ae: Class conditioned auto-encoder for open-set recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 2307–2316).
Rein, R., & Memmert, D. (2016). Big data and tactical analysis in elite soccer: Future challenges and opportunities for sports science. Springerplus, 5(1), 1410.
Scheirer, W. J., de Rezende Rocha, A., Sapkota, A., & Boult, T. E. (2012). Toward open set recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(7), 1757–1772.
Sun, X., Yang, Z., Zhang, C., Ling, K. V., & Peng, G. (2020). Conditional gaussian distribution learning for open set recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 13480–13489).
Suzuki, G., Takahashi, S., Ogawa, T., & Haseyama, M. (2018, October). Team tactics estimation in soccer videos via deep extreme learning machine based on players formation. In 2018 IEEE 7th global conference on consumer electronics (GCCE) (pp. 116–117). IEEE.
Wu, L., Yang, Z., Wang, Q., Jian, M., Zhao, B., Yan, J., & Chen, C. W. (2020). Fusing motion patterns and key visual information for semantic event recognition in basketball videos. Neurocomputing, 413, 217–229.
Yoon, Y., Yu, J., & Jeon, M. (2019). Spatio-temporal representation matching-based open-set action recognition by joint learning of motion and appearance. IEEE Access, 7, 165997–166010.
Yoshihashi, R., Shao, W., Kawakami, R., You, S., Iida, M., & Naemura, T. (2019). Classification-reconstruction learning for open-set recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4016–4025).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer-Verlag GmbH, DE, part of Springer Nature
About this chapter
Cite this chapter
da Silva Torres, R. (2024). Open-Set Recognition. In: Memmert, D. (eds) Computer Science in Sport. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-68313-2_26
Download citation
DOI: https://doi.org/10.1007/978-3-662-68313-2_26
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-662-68312-5
Online ISBN: 978-3-662-68313-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)