[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Learning Automatic Families of Languages

  • Conference paper
  • First Online:
SOFSEM 2016: Theory and Practice of Computer Science (SOFSEM 2016)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9587))

Abstract

A class of languages is automatic if it is uniformly regular using some regular index set for the languages. In this survey we report on work about the learnability in the limit of automatic classes of languages, with some special emphasis to automatic learners.

Research for this work is supported in part by NUS grants C252-000-087-001 (S. Jain) and R146-000-181-112 (S. Jain and F. Stephan).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Angluin, D.: Finding patterns common to a set of strings. J. Comput. Syst. Sci. 21(1), 46–62 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  2. Angluin, D.: Inductive inference of formal languages from positive data. Inf. Control 45, 117–135 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bārzdiņš, J.: Inductive inference of automata, functions and programs. In: Proceedings of the 20th International Congress of Mathematicians, Vancouver, pp. 455–460 (1974). In: Russian. English translation in American Mathematical Society Translations: Series 2, vol. 109, pp. 107–112 (1977)

    Google Scholar 

  4. Blumensath, A., Grädel, E.: Automatic structures. In: 15th Annual IEEE Symposium on Logic in Computer Science (LICS), pp. 51–62. IEEE Computer Society (2000)

    Google Scholar 

  5. Case, J., Jain, S., Ong, Y.S., Semukhin, P., Stephan, F.: Automatic learners with feedback queries. J. Comput. Syst. Sci. 80, 806–820 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  6. Case, J., Jain, S., Ott, M., Sharma, A., Stephan, F.: Robust learning aided by context. J. Comput. Syst. Sci. 60, 234–257 (2000). (Special Issue for COLT 1998)

    Google Scholar 

  7. Case, J., Jain, S., Seah, S., Stephan, F.: Automatic functions, linear time and learning. In: Cooper, S.B., Dawar, A., Löwe, B. (eds.) CiE 2012. LNCS, vol. 7318, pp. 96–106. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  8. Case, J., Jain, S., Stephan, F., Wiehagen, R.: Robust learning - rich and poor. J. Comput. Syst. Sci. 69(2), 123–165 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Case, J., Jain, S., Le, T.D., Ong, Y.S., Semukhin, P., Stephan, F.: Automatic learning of subclasses of pattern languages. Inf. Comput. 218, 17–35 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Fulk, M.: Robust separations in inductive inference. In: 31st Annual IEEE Symposium on Foundations of Computer Science, pp. 405–410. IEEE Computer Society Press (1990)

    Google Scholar 

  11. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)

    Article  MATH  Google Scholar 

  12. Jain, S.: Robust behaviorally correct learning. Inf. Comput. 153(2), 238–248 (1999)

    Article  MATH  Google Scholar 

  13. Jain, S., Kinber, E.: Automatic learning from positive data and negative counterexamples. In: Bshouty, N.H., Stoltz, G., Vayatis, N., Zeugmann, T. (eds.) ALT 2012. LNCS, vol. 7568, pp. 66–80. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Jain, S., Kinber, E.: Parallel learning of automatic classes of languages. In: Auer, P., Clark, A., Zeugmann, T., Zilles, S. (eds.) ALT 2014. LNCS, vol. 8776, pp. 70–84. Springer, Heidelberg (2014)

    Google Scholar 

  15. Jain, S., Kinber, E.: Parallel learning of automatic classes of languages. Accepted for Theoretical Computer Science (2016). Special Issue for ALT 2014

    Google Scholar 

  16. Jain, S., Kinber, E., Stephan, F.: Automatic learning from positive data and negative counterexamples (2014). (Manuscript)

    Google Scholar 

  17. Jain, S., Luo, Q., Stephan, F.: Learnability of automatic classes. J. Comput. Syst. Sci. 78(6), 1910–1927 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  18. Jain, S., Luo, Q., Semukhin, P., Stephan, F.: Uncountable automatic classes and learning. Theoret. Comput. Sci. 412(19), 1805–1820 (2011). Special Issue for ALT 2009

    Google Scholar 

  19. Jain, S., Martin, E., Stephan, F.: Robust learning of automatic classes of langauges. J. Comput. Syst. Sci. 80, 777–795 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jain, S., Ong, Pu, Y.S., Stephan, F.: On automatic families. In: Arai, T., Feng, Q., Kim, B., Wu, G., Yang, Y. (eds.) Proceedings of the 11th Asian Logic Conference, in Honor of Professor Chong Chitat’s 60th birthday, 2009, pp. 94–113. World Scientific (2011)

    Google Scholar 

  21. Jain, S., Smith, C., Wiehagen, R.: Robust learning is rich. J. Comput. Syst. Sci. 62(1), 178–212 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  22. Jantke, K.: Monotonic and non-monotonic inductive inference of functions and patterns. In: Dix, J., Jantke, K.P., Schmitt, P.H. (eds.) NIL 2004. LNCS, vol. 543, pp. 161–177. Springer, Heidelberg (1990)

    Chapter  Google Scholar 

  23. Khoussainov, B., Nerode, A.: Automatic presentations of structures. In: Leivant, Daniel (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  24. Kinber, E., Smith, C., Velauthapillai, M., Wiehagen, R.: On learning multiple concepts in parallel. J. Comput. Syst. Sci. 50, 41–52 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kurtz, S., Smith, C.: A refutation of Barzdins’ conjecture. In: Jantke, K.P. (ed.) AII 1989. LNCS, vol. 397, pp. 171–176. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  26. Lange, S., Zeugmann, T.: Types of monotonic language learning and their characterization. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 377–390. ACM Press (1992)

    Google Scholar 

  27. Mukouchi, Y.: Characterization of finite identification. In: Jantke, K. (ed.) Analogical and Inductive Inference. Proceedings of the Third International Workshop, pp. 260–267 (1992)

    Google Scholar 

  28. Osherson, D., Stob, M., Weinstein, S.: Learning strategies. Inf. Control 53, 32–51 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  29. Osherson, D., Stob, S.M., Weinstein, S.: Systems that Learn: an Introduction to Learning Theory for Cognitive and Computer Scientists. MIT Press, Cambridge (1986)

    Google Scholar 

  30. Ott, M., Stephan, F.: Avoiding coding tricks by hyperrobust learning. Theoret. Comput. Sci. 284(1), 161–180 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  31. Schäfer-Richter, G.: Über Eingabeabhängigkeit und Komplexität von Inferenzstrategien. PhD thesis, RWTH Aachen (1984)

    Google Scholar 

  32. Shinohara, T.: Polynomial time inference of extended regular pattern languages. In: Goto, E., Furukawa, K., Nakajima, R., Nakata, I., Yonezawa, A. (eds.) RIMS Symposia on Software Science and Engineering. LNCS, vol. 147, pp. 115–127. Springer, Berlin (1982). Kyoto, Japan

    Chapter  Google Scholar 

  33. Wiehagen, R.: Limes-Erkennung rekursiver Funktionen durch spezielle Strategien. J. Inf. Process. Cybern. (EIK) 12(1–2), 93–99 (1976)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgements

This survey consists of work done with several authors: John Case, Efim Kinber, Trong Dao Le, Qinglong Luo, Eric Martin, Yuh Shin Ong, Shi Pu, Samuel Seah and Pavel Semukhin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Jain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jain, S., Stephan, F. (2016). Learning Automatic Families of Languages. In: Freivalds, R., Engels, G., Catania, B. (eds) SOFSEM 2016: Theory and Practice of Computer Science. SOFSEM 2016. Lecture Notes in Computer Science(), vol 9587. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-49192-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-49192-8_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-49191-1

  • Online ISBN: 978-3-662-49192-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics