Abstract
This chapter first provides a formulation of the geometric path planning problem in Sect. 7.2 and then introduces sampling-based planning in Sect. 7.3. Sampling-based planners are general techniques applicable to a wide set of problems and have been successful in dealing with hard planning instances. For specific, often simpler, planning instances, alternative approaches exist and are presented in Sect. 7.4. These approaches provide theoretical guarantees and for simple planning instances they outperform sampling-based planners. Section 7.5 considers problems that involve differential constraints, while Sect. 7.6 overviews several other extensions of the basic problem formulation and proposed solutions. Finally, Sect. 7.8 addresses some important and more advanced topics related to motion planning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Abbreviations
- 1-D:
-
one-dimensional
- 2-D:
-
two-dimensional
- 3-D:
-
three-dimensional
- PRM:
-
probabilistic roadmap method
- RDT:
-
rapidly exploring dense tree
- RLG:
-
random loop generator
- RRT:
-
rapidly exploring random tree
References
J.H. Reif: Complexity of the mover's problem and generalizations, IEEE Symp. Found. Comput. Sci. (1979) pp. 421–427
H.H. Gonzalez-Banos, D. Hsu, J.C. Latombe: Motion planning: Recent developments. In: Automous Mobile Robots: Sensing, Control, Decision-Making and Applications, ed. by S.S. Ge, F.L. Lewis (CRC, Boca Raton 2006)
S.R. Lindemann, S.M. LaValle: Current issues in sampling-based motion planning, 11th Int. Symp. Robotics Res. (Springer, Berlin, Heidelberg 2005) pp. 36–54
J.T. Schwartz, M. Sharir: A survey of motion planning and related geometric algorithms, Artif. Intell. J. 37, 157–169 (1988)
H. Choset, K.M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L.E. Kavraki, S. Thrun: Principles of Robot Motion: Theory, Algorithms, and Implementations (MIT, Cambridge 2005)
J.C. Latombe: Robot Motion Planning (Kluwer, Boston 1991)
S.M. LaValle: Planning Algorithms (Cambridge Univ. Press, Cambridge 2006)
S. Udupa: Collision detection and avoidance in computer controlled manipulators, Ph.D. Thesis (Dept. of Electical Engineering, California Institute of Technology, Pasadena 1977)
T. Lozano-Pérez: Spatial planning: A configuration space approach, IEEE Trans. Comput. C 32(2), 108–120 (1983)
J.T. Schwartz, M. Sharir: On the piano movers' problem: III. Coordinating the motion of several independent bodies, Int. J. Robotics Res. 2(3), 97–140 (1983)
J.T. Schwartz, M. Sharir: On the piano movers' problem: V. The case of a rod moving in three-dimensional space amidst polyhedral obstacles, Commun. Pure Appl. Math. 37, 815–848 (1984)
J.F. Canny: The Complexity of Robot Motion Planning (MIT, Cambridge 1988)
D. Halperin, M. Sharir: A near-quadratic algorithm for planning the motion of a polygon in a polygonal environment, Discret. Comput. Geom. 16, 121–134 (1996)
J.E. Hopcroft, J.T. Schwartz, M. Sharir: On the complexity of motion planning for multiple independent objects: PSPACE-hardness of the warehouseman's problem, Int. J. Robotics Res. 3(4), 76–88 (1984)
J. Canny, J. Reif: New lower bound techniques for robot motion planning problems, IEEE Symp. Found. Comput. Sci. (1987) pp. 49–60
M.C. Lin, J.F. Canny: Efficient algorithms for incremental distance computation, IEEE Int. Conf. Robotics Autom. (1991) pp. 1008–1014
P. Jiménez, F. Thomas, C. Torras: Collision detection algorithms for motion planning. In: Robot Motion Planning and Control, ed. by J.P. Laumond (Springer, Berlin, Heidelberg 1998) pp. 1–53
M.C. Lin, D. Manocha: Collision and proximity queries. In: Handbook of Discrete and Computational Geometry, 2nd edn., ed. by J.E. Goodman, J. O'Rourke (Chapman Hall/CRC, Boca Raton 2004) pp. 787–807
L.E. Kavraki, P. Svestka, J.C. Latombe, M.H. Overmars: Probabilistic roadmaps for path planning in high-dimensional configuration spaces, IEEE Trans. Robotics Autom. 12(4), 566–580 (1996)
N.M. Amato, O.B. Bayazit, L.K. Dale, C. Jones, D. Vallejo: OBPRM: An obstacle-based PRM for 3-D workspaces, Workshop Algorith. Found. Robotics (1998) pp. 155–168
V. Boor, M.H. Overmars, A.F. van der Stappen: The Gaussian sampling strategy for probabilistic roadmap planners, IEEE Int. Conf. Robotics Autom. (1999) pp. 1018–1023
C. Holleman, L.E. Kavraki: A framework for using the workspace medial axis in PRM planners, IEEE Int. Conf. Robotics Autom. (2000) pp. 1408–1413
J.M. Lien, S.L. Thomas, N.M. Amato: A general framework for sampling on the medial axis of the free space, IEEE Int. Conf. Robotics Autom. (2003)
S.M. LaValle, M.S. Branicky, S.R. Lindemann: On the relationship between classical grid search and probabilistic roadmaps, Int. J. Robotics Res. 23(7/8), 673–692 (2004)
T. Siméon, J.-P. Laumond, C. Nissoux: Visibility based probabilistic roadmaps for motion planning, Adv. Robotics 14(6), 477–493 (2000)
J. Barraquand, L. Kavraki, J.-C. Latombe, T.-Y. Li, R. Motwani, P. Raghavan: A random sampling scheme for robot path planning, Proc. Int. Symp. Robotics Res. (1996) pp. 249–264
A. Ladd, L.E. Kavraki: Measure theoretic analysis of probabilistic path planning, IEEE Trans. Robotics Autom. 20(2), 229–242 (2004)
R. Geraerts, M. Overmars: Sampling techniques for probabilistic roadmap planners, Int. Conf. Intell. Auton. Syst. (2004) pp. 600–609
D. Hsu, T. Jiang, J. Reif, Z. Sun: The bridge test for sampling narrow passages with probabilistic roadmap planners, IEEE Int. Conf. Robotics Autom. (2003) pp. 4420–4426
R. Bohlin, L. Kavraki: Path planning using lazy PRM, IEEE Int. Conf. Robotics Autom. (2000) pp. 521–528
B. Burns, O. Brock: Sampling-based motion planning using predictive models, IEEE Int. Conf. Robotics Autom. (2005) pp. 3120–3125
P. Isto: Constructing probabilistic roadmaps with powerful local planning and path optimization, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2002) pp. 2323–2328
P. Leven, S.A. Hutchinson: Using manipulability to bias sampling during the construction of probabilistic roadmaps, IEEE Trans. Robotics Autom. 19(6), 1020–1026 (2003)
D. Nieuwenhuisen, M.H. Overmars: Useful cycles in probabilistic roadmap graphs, IEEE Int. Conf. Robotics Autom. (2004) pp. 446–452
S.M. LaValle, J.J. Kuffner: Rapidly-exploring random trees: progress and prospects. In: Algorithmic and Computational Robotics: New Direction, ed. by B.R. Donald, K.M. Lynch, D. Rus (A.K. Peters, Wellesley 2001) pp. 293–308
K.E. Bekris, B.Y. Chen, A. Ladd, E. Plaku, L.E. Kavraki: Multiple query probabilistic roadmap planning using single query primitives, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2003) pp. 656–661
M. Strandberg: Augmenting RRT-planners with local trees, IEEE Int. Conf. Robotics Autom. (2004) pp. 3258–3262
J.J. Kuffner, S.M. LaValle: An Efficient Approach to Path Planning Using Balanced Bidirectional RRT Search, Techn. Rep. CMU-RI-TR-05-34 Robotics Institute (Carnegie Mellon University, Pittsburgh 2005)
J. Bruce, M. Veloso: Real-time randomized path planning for robot navigation, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2002) pp. 2383–2388
E. Frazzoli, M.A. Dahleh, E. Feron: Real-time motion planning for agile autonomous vehicles, AIAA J. Guid. Contr. 25(1), 116–129 (2002)
M. Kallmann, M. Mataric: Motion planning using dynamic roadmaps, IEEE Int. Conf. Robotics Autom. (2004) pp. 4399–4404
A. Yershova, L. Jaillet, T. Simeon, S.M. LaValle: Dynamic-domain RRTs: Efficient exploration by controlling the sampling domain, IEEE Int. Conf. Robotics Autom. (2005) pp. 3867–3872
D. Hsu, J.C. Latombe, R. Motwani: Path planning in expansive configuration spaces, Int. J. Comput. Geom. Appl. 4, 495–512 (1999)
D. Hsu, R. Kindel, J.C. Latombe, S. Rock: Randomized kinodynamic motion planning with moving obstacles. In: Algorithmic and Computational Robotics: New Directions, ed. by B.R. Donald, K.M. Lynch, D. Rus (A.K. Peters, Wellesley 2001) pp. 247–264
G. Sánchez, J.-C. Latombe: A single-query bi-directional probabilistic roadmap planner with lazy collision checking, ISRR Int. Symp. Robotics Res. (2007) pp. 403–413
S. Carpin, G. Pillonetto: Robot motion planning using adaptive random walks, IEEE Int. Conf. Robotics Autom. (2003) pp. 3809–3814
A. Ladd, L.E. Kavraki: Fast exploration for robots with dynamics, Workshop Algorithm. Found. Robotics, Amsterdam (2004)
K.E. Bekris, L.E. Kavraki: Greedy but safe replanning under differential constraints, IEEE Int. Conf. Robotics Autom. (2007) pp. 704–710
C. O'Dunlaing, C.K. Yap: A retraction method for planning the motion of a disc, J. Algorithms 6, 104–111 (1982)
D. Leven, M. Sharir: Planning a purely translational motion for a convex object in two-dimensional space using generalized Voronoi diagrams, Discret. Comput. Geom. 2, 9–31 (1987)
M. Sharir: Algorithmic motion planning. In: Handbook of Discrete and Computational Geometry, 2nd edn., ed. by J.E. Goodman, J. O'Rourke (Chapman Hall/CRC, Boca Raton 2004) pp. 1037–1064
N.J. Nilsson: A mobile automaton: An application of artificial intelligence techniques, 1st Int. Conf. Artif. Intell. (1969) pp. 509–520
J. O'Rourke: Visibility. In: Handbook of Discrete and Computational Geometry, 2nd edn., ed. by J.E. Goodman, J. O'Rourke (Chapman Hall/CRC, Boca Raton 2004) pp. 643–663
B. Chazelle: Approximation and decomposition of shapes. In: Algorithmic and Geometric Aspects of Robotics, ed. by J.T. Schwartz, C.K. Yap (Lawrence Erlbaum, Hillsdale 1987) pp. 145–185
M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf: Computational Geometry: Algorithms and Applications, 2nd edn. (Springer, Berlin, Heidelberg 2000)
J.M. Keil: Polygon decomposition. In: Handbook on Computational Geometry, ed. by J.R. Sack, J. Urrutia (Elsevier, New York 2000)
J.T. Schwartz, M. Sharir: On the piano movers' problem: I. The case of a two-dimensional rigid polygonal body moving amidst polygonal barriers, Commun. Pure Appl. Math. 36, 345–398 (1983)
O. Khatib: Real-time obstacle avoidance for manipulators and mobile robots, Int. J. Robotics Res. 5(1), 90–98 (1986)
J. Barraquand, J.-C. Latombe: Robot motion planning: A distributed representation approach, Int. J. Robotics Res. 10(6), 628–649 (1991)
E. Rimon, D.E. Koditschek: Exact robot navigation using artificial potential fields, IEEE Trans. Robotics Autom. 8(5), 501–518 (1992)
J.P. Laumond: Trajectories for mobile robots with kinematic and environment constraints, Int. Conf. Intell. Auton. Syst. (1986) pp. 346–354
J.P. Laumond, S. Sekhavat, F. Lamiraux: Guidelines in nonholonomic motion planning for mobile robots. In: Robot Motion Planning and Control, ed. by J.P. Laumond (Springer, Berlin, Heidelberg 1998) pp. 1–53
B.R. Donald, P.G. Xavier, J. Canny, J. Reif: Kinodynamic planning, Journal ACM 40, 1048–1066 (1993)
C. O'Dunlaing: Motion planning with inertial constraints, Algorithmica 2(4), 431–475 (1987)
J. Canny, A. Rege, J. Reif: An exact algorithm for kinodynamic planning in the plane, Discret. Comput. Geom. 6, 461–484 (1991)
J. Go, T. Vu, J.J. Kuffner: Autonomous behaviors for interactive vehicle animations, SIGGRAPH/Eurographics Symp. Comput. Animat., Aire-la-Ville (2004) pp. 9–18
M. Pivtoraiko, A. Kelly: Generating near minimal spanning control sets for constrained motion planning in discrete state spaces, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2005) pp. 3231–3237
J. Hollerbach: Dynamic scaling of manipulator trajectories, Tech. Rep. 700 (MIT, Cambridge 1983)
K.G. Shin, N.D. McKay: Minimum-time control of robot manipulators with geometric path constraints, IEEE Trans. Autom. Control 30(6), 531–541 (1985)
K.G. Shin, N.D. McKay: A dynamic programming approach to trajectory planning of robotic manipulators, IEEE Trans. Autom. Control 31(6), 491–500 (1986)
S. Sastry: Nonlinear Systems: Analysis, Stability, and Control (Springer, Berlin, Heidelberg 1999)
D.J. Balkcom, M.T. Mason: Time optimal trajectories for bounded velocity differential drive vehicles, Int. J. Robotics Res. 21(3), 199–217 (2002)
P. Souères, J.-D. Boissonnat: Optimal trajectories for nonholonomic mobile robots. In: Robot Motion Planning and Control, ed. by J.P. Laumond (Springer, Berlin, Heidelberg 1998) pp. 93–169
P. Svestka, M.H. Overmars: Coordinated motion planning for multiple car-like robots using probabilistic roadmaps, IEEE Int. Conf. Robotics Autom. (1995) pp. 1631–1636
S. Sekhavat, P. Svestka, J.-P. Laumond, M.H. Overmars: Multilevel path planning for nonholonomic robots using semiholonomic subsystems, Int. J. Robotics Res. 17, 840–857 (1998)
P. Ferbach: A method of progressive constraints for nonholonomic motion planning, IEEE Int. Conf. Robotics Autom. (1996) pp. 2949–2955
S. Pancanti, L. Pallottino, D. Salvadorini, A. Bicchi: Motion planning through symbols and lattices, IEEE Int. Conf. Robotics Autom. (2004) pp. 3914–3919
J. Barraquand, J.-C. Latombe: Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles, Algorithmica 10, 121–155 (1993)
S.M. LaValle, J.J. Kuffner: Randomized kinodynamic planning, IEEE Int. Conf. Robotics Autom. (1999) pp. 473–479
A.M. Ladd, L.E. Kavraki: Motion planning in the presence of drift underactuation and discrete system changes, Robotics Sci. Syst. I, Cambridge (2005) pp. 233–241
J.-P. Merlet: Parallel Robots (Kluwer, Boston 2000)
D. Cox, J. Little, D. O'Shea: Ideals, Varieties, and Algorithms (Springer, Berlin, Heidelberg 1992)
R.J. Milgram, J.C. Trinkle: The geometry of configuration spaces for closed chains in two and three dimensions, Homol. Homot. Appl. 6(1), 237–267 (2004)
J. Yakey, S.M. LaValle, L.E. Kavraki: Randomized path planning for linkages with closed kinematic chains, IEEE Trans. Robotics Autom. 17(6), 951–958 (2001)
L. Han, N.M. Amato: A kinematics-based probabilistic roadmap method for closed chain systems. In: Algorithmic and Computational Robotics: New Directions, ed. by B.R. Donald, K.M. Lynch, D. Rus (A.K. Peters, Wellesley 2001) pp. 233–246
J. Cortés: Motion Planning Algorithms for General Closed-Chain Mechanisms, Ph.D. Thesis (Institut National Polytechnique do Toulouse, Toulouse 2003)
R. Alami, J.-P. Laumond, T. Siméon: Two manipulation planning algorithms. In: Algorithms for Robotic Motion and Manipulation, ed. by J.P. Laumond, M. Overmars (A.K. Peters, Wellesley 1997)
L.E. Kavraki, M. Kolountzakis: Partitioning a planar assembly into two connected parts is NP-complete, Inform. Process. Lett. 55(3), 159–165 (1995)
M.T. Mason: Mechanics of Robotic Manipulation (MIT, Cambridge 2001)
K. Sutner, W. Maass: Motion planning among time dependent obstacles, Acta Inform. 26, 93–122 (1988)
J.H. Reif, M. Sharir: Motion planning in the presence of moving obstacles, Journal ACM 41, 764–790 (1994)
M.A. Erdmann, T. Lozano-Pérez: On multiple moving objects, Algorithmica 2, 477–521 (1987)
J. van den Berg, M. Overmars: Prioritized motion planning for multiple robots, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2005) pp. 2217–2222
T. Siméon, S. Leroy, J.-P. Laumond: Path coordination for multiple mobile robots: A resolution complete algorithm, IEEE Trans. Robotics Autom. 18(1), 42–49 (2002)
R. Ghrist, J.M. O'Kane, S.M. LaValle: Pareto optimal coordination on roadmaps, Workshop Algorithm. Found. Robotics (2004) pp. 185–200
S.M. LaValle, S.A. Hutchinson: Optimal motion planning for multiple robots having independent goals, IEEE Trans. Robotics Autom. 14(6), 912–925 (1998)
P.R. Kumar, P. Varaiya: Stochastic Systems (Prentice Hall, Englewood Cliffs 1986)
S.M. LaValle: Sensing and Filtering: A Fresh Perspective Based on Preimages and Information Spaces, Foundations and Trends in Robotics (Now Publ., Delft 2012)
R. Alterovitz, N. Simeon, K. Goldberg: The stochastic motion roadmap: A sampling framework for planning with Markov motion uncertainty, Robotics Sci. Syst. 3, 233–241 (2007)
H. Kurniawati, D. Hsu, W.S. Lee: SARSOP: Efficient point-based POMDP planning by approximating optimally reachable belief spaces, Robotics Sci. Syst. (2008)
J. Pineau, G. Gordon, S. Thrun: Point-based value iteration, Int. Joint Conf. Artif. Intell. (2003) pp. 1025–1032
R. Platt, R. Tedrake, T. Lozano-Perez, L.P. Kaelbling: Belief space planning assuming maximum likelihood observations, Robotics Sci. Syst. (2010)
N. Roy, G. Gordon: Exponential family PCA for belief compression in POMDPs, Adv. Neural Inform. Process. Syst. (2003)
R. He, S. Prentice, N. Roy: Planning in information space for a quadrotor helicopter in a GPS-denied environment, IEEE Int. Conf. Robotics Autom. (2008)
S. Koenig, M. Likhachev: $D^{*}$ lite, AAAI Nat. Conf. Artif. Intell. (2002) pp. 476–483
A. Stentz: Optimal and efficient path planning for partially-known environments, IEEE Int. Conf. Robotics Autom. (1994) pp. 3310–3317
J. Hershberger, S. Suri: Efficient Computation of Euclidean shortest paths in the plane, IEEE Symp. Found. Comp. Sci. (1995) pp. 508–517
J.S.B. Mitchell: Shortest paths among obstacles in the plane, Int. J. Comput. Geom. Applic. 6(3), 309 (1996)
J. Choi, J. Sellen, C.K. Yap: Precision-sensitive Euclidean shortest path in 3-space, ACM Symp. Comput. Geo. (1995) pp. 350–359
C.H. Papadimitriou: An algorithm for shortest-path planning in three dimensions, Inform. Process. Lett. 20(5), 259 (1985)
D. Yershov, S.M. LaValle: Simplicial Dijkstra and A* algorithms for optimal feedback planning, IEEE/RSJ Int. Conf. Intell. Robots Syst. (2011)
S. Karaman, E. Frazzoli: Sampling-based algorithms for optimal motion planning, Int. J. Robotics Res. 30(7), 846 (2011)
J.D. Marble, K.E. Bekris: Towards small asymptotically near-optimal roadmaps, IEEE Int. Conf. Robotics Autom. (2012)
W.M. Boothby: An Introduction to Differentiable Manifolds and Riemannian Geometry, 2nd edn. (Academic, New York 2003)
A. Hatcher: Algebraic Topology (Cambridge Univ. Press, Cambridge 2002)
G.S. Chirikjian, A.B. Kyatkin: Engineering Applications of Noncommutative Harmonic Analysis (CRC, Boca Raton 2001)
J. Arvo: Fast random rotation matrices. In: Graphics Gems III, ed. by D. Kirk (Academic, New York 1992) pp. 117–120
H. Niederreiter: Random Number Generation and Quasi-Monte-Carlo Methods (Society for Industrial and Applied Mathematics, Philadelphia 1992)
S. Basu, R. Pollack, M.-F. Roy: Algorithms in Real Algebraic Geometry (Springer, Berlin, Heidelberg 2003)
B. Mishra: Computational real algebraic geometry. In: Handbook of Discrete and Computational Geometry, ed. by J.E. Goodman, J. O'Rourke (CRC, Boca Raton 1997) pp. 537–556
J.T. Schwartz, M. Sharir: On the piano movers' problem: II. General techniques for computing topological properties of algebraic manifolds, Commun. Pure Appl. Math. 36, 345–398 (1983)
B.R. Donald: A search algorithm for motion planning with six degrees of freedom, Artif. Intell. J. 31, 295–353 (1987)
D.S. Arnon: Geometric reasoning with logic and algebra, Artif. Intell. J. 37(1-3), 37–60 (1988)
G.E. Collins: Quantifier elimination by cylindrical algebraic decomposition–twenty years of progress. In: Quantifier Elimination and Cylindrical Algebraic Decomposition, ed. by B.F. Caviness, J.R. Johnson (Springer, Berlin, Heidelberg 1998) pp. 8–23
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Video-References
Video-References
- :
-
Powder transfer task using demonstration-guided motion planningavailable from http://handbookofrobotics.org/view-chapter/07/videodetails/17
- :
-
Simulation of a large crowdavailable from http://handbookofrobotics.org/view-chapter/07/videodetails/21
- :
-
Motion planning in multi-robot scenarioavailable from http://handbookofrobotics.org/view-chapter/07/videodetails/22
- :
-
Alpha puzzleavailable from http://handbookofrobotics.org/view-chapter/07/videodetails/23
- :
-
Kinodynamic motion planning for a car-like robotavailable from http://handbookofrobotics.org/view-chapter/07/videodetails/24
Rights and permissions
Copyright information
© 2016 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Kavraki, L.E., LaValle, S.M. (2016). Motion Planning. In: Siciliano, B., Khatib, O. (eds) Springer Handbook of Robotics. Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-319-32552-1_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-32552-1_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-32550-7
Online ISBN: 978-3-319-32552-1
eBook Packages: EngineeringEngineering (R0)