[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Simulations of Cardiac Electrophysiology Combining GPU and Adaptive Mesh Refinement Algorithms

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2016)

Abstract

Computer models have become valuable tools for the study and comprehension of the complex phenomena of cardiac electrophysiology. However, the high complexity of the biophysical processes translates into complex mathematical and computational models. In this paper we evaluate a hybrid multicore and graphics processing unit numerical algorithm based on mesh adaptivity and on the finite volume method to cope with the complexity and to accelerate these simulations. This is a very attractive approach since the electrical wavefront corresponds to only a small fraction of the cardiac tissue. Usually, the numerical solution of the partial differential equations that model the phenomenon requires very fine spatial discretization to follow the wavefront, which is approximately 0.2 mm. The use of uniform meshes leads to high computational cost as it requires a large number of mesh points. In this sense, the tests reported in this work show that simulations of three-dimensional models of cardiac tissue have been accelerated by more than 626 times using the adaptive mesh algorithm together with its parallelization, with no significant loss in accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bendahmane, M., Bürger, R., Ruiz-Baier, R.: A multiresolution space-time adaptive scheme for the bidomain model in electrocardiology. Numer. Met. Partial. Diff. Equ. 26(6), 1377–1404 (2010)

    MathSciNet  MATH  Google Scholar 

  2. Biktashev, V., Holden, A.: Re-entrant activity and its control in a model of mammalian ventricular tissue. Proc. Royal Soc. of London. Ser. B Biol. Sci. 263(1375), 1373–1382 (1996)

    Article  Google Scholar 

  3. Bondarenko, V.E., Szigeti, G.P., Bett, G.C., Kim, S.J., Rasmusson, R.L.: Computer model of action potential of mouse ventricular myocytes. Am. J. Physiol. Heart Circulatory Physiol. 287(3), H1378–H1403 (2004)

    Article  Google Scholar 

  4. Hodgkin, A., Huxley, A.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 117, 500–544 (1952)

    Article  Google Scholar 

  5. Hunter, P., Borg, T.: Integration from proteins to organs: the physiome project. Nat. Rev. Mol. Cell Biol. 4(3), 237–243 (2003)

    Article  Google Scholar 

  6. Moreira Gomes, J., Alvarenga, A., Silva Campos, R., Rocha, B., Couto da Silva, A., Weber dos Santos, R.: Uniformization method for solving cardiac electrophysiology models based on the markov-chain formulation. IEEE Trans. Biomed. Eng. 62(2), 600–608 (2015)

    Article  Google Scholar 

  7. Morgan, S., Plank, G., Biktasheva, I., Biktashev, V.: Low energy defibrillation in human cardiac tissue: a simulation study. Biophys. J. 96(4), 1364–1373 (2009)

    Article  Google Scholar 

  8. Niederer, S.A., Kerfoot, E., Benson, A.P., Bernabeu, M.O., Bernus, O., Bradley, C., Cherry, E.M., Clayton, R., Fenton, F.H., Garny, A., Heidenreich, E., Land, S., Maleckar, M., Pathmanathan, P., Plank, G., Rodríguez, J.F., Roy, I., Sachse, F.B., Seemann, G., Skavhaug, O., Smith, N.P.: Verification of cardiac tissue electrophysiology simulators using an n-version benchmark. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 369(1954), 4331–4351 (2011)

    Article  MathSciNet  Google Scholar 

  9. Oliveira, R.S., Rocha, B.M., Burgarelli, D., Meira Jr., W., dos Santos, R.W.: An adaptive mesh algorithm for the numerical solution of electrical models of the heart. In: Murgante, B., Gervasi, O., Misra, S., Nedjah, N., Rocha, A.M.A.C., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2012, Part I. LNCS, vol. 7333, pp. 649–664. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Oliveira, R.S., Rocha, B.M., Burgarelli, D., Meira Jr., W., Santos, R.W.D.: A parallel accelerated adaptive mesh algorithm for the solution of electrical models of the heart. Inter. J. High Perform. Syst. Archit. 4(2), 89–100 (2012)

    Article  Google Scholar 

  11. Panfilov, A., Müller, S., Zykov, V., Keener, J.: Elimination of spiral waves in cardiac tissue by multiple electrical shocks. Phys. Rev. E 61(4), 4644 (2000)

    Article  Google Scholar 

  12. Rush, S., Larsen, H.: A practical algorithm for solving dynamic membrane equations. IEEE Trans. Biomed. Eng. BME 25(4), 389–392 (1978)

    Article  Google Scholar 

  13. Sachetto Oliveira, R., Rocha, B.M., Amorim, R.M., Campos, F.O., Meira Jr., W., Toledo, E.M., dos Santos, R.W.: Comparing CUDA, OpenCL and OpenGL implementations of the cardiac monodomain equations. In: Wyrzykowski, R., Dongarra, J., Karczewski, K., Waśniewski, J. (eds.) PPAM 2011, Part II. LNCS, vol. 7204, pp. 111–120. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Weber dos Santos, R., Plank, G., Bauer, S., Vigmond, E.J.: Preconditioning techniques for the bidomain equations. Lecture Notes in Computational Science and Engineering, vol. 40, pp. 571–580. Springer, Heidelberg (2004)

    Google Scholar 

  15. Southern, J., Gorman, G., Piggott, M., Farrell, P.: Parallel anisotropic mesh adaptivity with dynamic load balancing for cardiac electrophysiology. J. Comp. Sci. 3, 8–16 (2012)

    Article  Google Scholar 

  16. ten Tusscher, K.H.W.J., Panfilov, A.V.: Alternans and spiral breakup in a human ventricular tissue model. Am. J. Physiol.: Heart Circulatory Physiol. 291(3), H1088–H1100 (2006)

    Google Scholar 

  17. Vigmond, E.J., Hughes, M., Plank, G., Leon, L.J.: Computational tools for modeling electrical activity in cardiac tissue. J. Electrocardiol. 36, 69–74 (2003)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded by CNPq, Capes, Fapemig, UFJF and Finep.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael S. Oliveira .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Oliveira, R.S., Rocha, B.M., Burgarelli, D., Meira , W., dos Santos, R.W. (2016). Simulations of Cardiac Electrophysiology Combining GPU and Adaptive Mesh Refinement Algorithms. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2016. Lecture Notes in Computer Science(), vol 9656. Springer, Cham. https://doi.org/10.1007/978-3-319-31744-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31744-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31743-4

  • Online ISBN: 978-3-319-31744-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics