Abstract
Image feature detectors and descriptors have made a big advance in several computer vision applications including object recognition, image registration, remote sensing, panorama stitching, and 3D surface reconstruction. Most of these fundamental algorithms are complicated in code, and their implementations are available for only a few platforms. This operational restriction causes various difficulties to utilize them, and even more, it makes different challenges to establish novel experiments and develop new research ideas. SeLibCV is a Software as a Service (SaaS) library for computer vision researchers worldwide that facilitates Rapid Application Development (RAD), and provides application-to-application interaction by tiny services accessible through the Internet. Its functionality covers a wide range of computer vision algorithms including image processing, features extraction, motion detection, visualization, and 3D surface reconstruction. The present paper focuses on the SeLibCV’s routines specializing in local features detection, extraction, and matching algorithms which offer reusable and platform independent components, leading to reproducible research for computer vision scientists. SeLibCV is freely available at http://selibcv.org for any academic, educational, and research purposes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
World wide web consortium. http://www.w3.org/
Matlab (2000). http://www.mathworks.com/products/matlab/
Lowe’s executable sift software (2005). http://www.cs.ubc.ca/lowe/keypoints/
Opencl (2008). https://www.khronos.org/opencl/
Vlfeat (2010). http://www.vlfeat.org/index.html
Clsurf (2011). https://code.google.com/p/clsurf/
Cvlab (2013). http://cvlab.epfl.ch/research/detect/brief
Computer vision system toolbox\(^{\rm TM}\) matlab (2014). http://www.mathworks.com/products/computer-vision/
Selibcv (2015). http://selibcv.org
Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S.M., Szeliski, R.: Building rome in a day. Commun. ACM 54(10), 105–112 (2011)
Almorsy, M., Grundy, J., Ibrahim, A.: Adaptable, model-driven security engineering for saas cloud-based applications. Autom. Softw. Eng. 21, 187–224 (2014)
Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46, 175–185 (1992)
Baghaie, A., D’souza, R.M., Yu, Z.: Sparse and low rank decomposition based batch image alignment for speckle reduction of retinal oct images (2014). arXiv preprint arXiv:1411.4033
Baghaie, A., Yu, Z.: Curvature-based registration for slice interpolation of medical images. In: Zhang, Y.J., Tavares, J.M.R.S. (eds.) CompIMAGE 2014. LNCS, vol. 8641, pp. 69–80. Springer, Heidelberg (2014)
Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice. Addison-Wesley, Boston (2013)
Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: speed up robust features. Comput. Vis. Image Underst. (CVIU) 110, 346–359 (2008)
Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: binary robust independent elementary features. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part IV. LNCS, vol. 6314, pp. 778–792. Springer, Heidelberg (2010)
Eriksson, H.-E., Penker, M.: Business modeling with UML. Wiley, Hoboken (2000)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Girod, B., Chandrasekhar, V., Chen, D.M., Cheung, N.-M., Grzeszczuk, R., Reznik, Y., Takacs, G., Tsai, S.S., Vedantham, R.: Mobile visual search. IEEE Signal Process. Mag. 28(4), 61–76 (2011)
Hamidi, S.A., Bravo, H.R., Klump, J.V., Waples, J.T.: The role of circulation and heat fluxes in the formation of stratification leading to hypoxia in Green Bay, Lake Michigan. J. Great Lakes Res. (2015)
Hatch, R.: SaaS Architecture, Adoption and Monetization of SaaS Projects using Best Practice Service Strategy, Service Design, Service Transition. Service Operation and Continual Service Improvement Processes. Brisbane, Emereo Pty Ltd (2008)
Huang, H., Guo, W., and Zhang, Y.: Detection of copy-move forgery in digital images using sift algorithm. In: Computational Intelligence and Industrial Application, PACIIA 2008, vol. 2 (2008)
Huijuan, Z., Qiong, H.: Fast image matching based-on improved surf algorithm. In: 2011 International Conference on Electronics, Communications and Control (ICECC), pp. 1460–1463. IEEE (2011)
Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking-learning-detection. IEEE Trans. Pattern Anal. Mach. Intell. 34(7), 1409–1422 (2012)
Kruchten, P.B.: The 4+ 1 view model of architecture. IEEE Softw. 12, 42–50 (1995)
li Song, Z., Li, S., George, T.F.: Remote sensing image registration approach based on a retrofitted sift algorithm and lissajous-curve trajectories. Opt. Express 18(2), 513–522 (2010)
Lowe, D.G.: Object recognition from local scale-invariant features. In: International Conference on Computer Vision, Corfu, Greece, pp. 1150–1157 (1999)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vision 60(2), 91–110 (2004)
Song, Z.L., Zhang, J.: Remote sensing image registration based on retrofitted surf algorithm and trajectories generated from lissajous figures. IEEE Geosci. Remote Sens. Lett. 7(3), 491–495 (2010)
Srinivasan, L., Treadwell, J.: An overview of service-oriented architecture, web services, and grid computing. HP Software Global Business Unit (2005)
Tafti, A.P., Baghaie, A., Kirkpatrick, A.B., Owen, H.A., D’Souza, R.M., Yu, Z.: A comparative study on the application of sift, surf, brief and orb for 3d surface reconstruction of electron microscopy images. In: Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization (2015)
Tafti, A.P., Hassannia, H., Yu, Z.: siftservice. com-turning a computer vision algorithm into a world wide web service (2015a). arXiv preprint arXiv:1504.02840
Tafti, A.P., Kirkpatrick, A.B., Owen, H.A., Yu, Z.: 3D microscopy vision using multiple view geometry and differential evolutionary approaches. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., McMahan, R., Jerald, J., Zhang, H., Drucker, S.M., Kambhamettu, C., El Choubassi, M., Deng, Z., Carlson, M. (eds.) ISVC 2014, Part II. LNCS, vol. 8888, pp. 141–152. Springer, Heidelberg (2014)
Tafti, A.P., Kirkpatrick, A.B., Alavi, Z., Owen, H.A., Yu, Z.: Recent advances in 3d sem surface reconstruction. Micron 78, 54–66 (2015b)
Teke, M., Temizel, A.: Multi-spectral satellite image registration using scale-restricted surf. In: 2010 20th International Conference on Pattern Recognition (ICPR), pp. 2310–2313. IEEE (2010)
Yu, J., Lin, J.: An architecture for cloud-based consumer support software-as-a-service. In: IEEE International Symposium on Computer, Consumer and Control (IS3C) (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Tafti, A.P., Hassannia, H., Piziak, D., Yu, Z. (2015). SeLibCV: A Service Library for Computer Vision Researchers. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9475. Springer, Cham. https://doi.org/10.1007/978-3-319-27863-6_50
Download citation
DOI: https://doi.org/10.1007/978-3-319-27863-6_50
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-27862-9
Online ISBN: 978-3-319-27863-6
eBook Packages: Computer ScienceComputer Science (R0)