[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 415))

  • 676 Accesses

  • 10 Citations

Abstract

Recently Formal Concept Analysis (FCA), a mathematical framework based on partial ordering relations has become popular for knowledge representation and reasoning. Further this framework is extended as Fuzzy FCA, Rough FCA, etc. to deal with practical applications. There are investigations in the literature applying FCA for Information Retrieval (IR) applications. The objective of this paper is to apply Fuzzy FCA approach for IR. While adopting Fuzzy FCA, we follow a fast algorithm to generate the fuzzy concepts rather than classical algorithms that are based on residuated methods. Further we follow an approach that retrieves the relevant documents even during absence of exact match of the keywords.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 103.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 129.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Waller, W.G., Kraft, D.H.: A mathematical model of a weighted Boolean retrieval system. Inf. Process. Manage. 15(5), 235–245 (1979)

    Article  MATH  Google Scholar 

  2. Cerulo, L., Canfora, G.: A taxonomy of information retrieval models and tools. CIT. J. Comput. Inf. Technol. 12(3), 175–194 (2004)

    Google Scholar 

  3. Codocedo, V., Napoli, A.: Formal concept analysis and information retrieval–a survey. In: Formal Concept Analysis, pp. 61–77. Springer International Publishing (2015)

    Google Scholar 

  4. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval, vol. 1, p. 496. Cambridge University Press, Cambridge (2008)

    Book  MATH  Google Scholar 

  5. Dominich, S.: The Modern Algebra of Information Retrieval, pp. 74–93. Springer, Heidelberg (2008)

    Google Scholar 

  6. Baeza-Yates, R., &Ribeiro-Neto, B.: Modern Information Retrieval (vol. 463). ACM press, New York (1999)

    Google Scholar 

  7. Wong, S.K.M., Yao, Y.Y.: On modeling information retrieval with probabilistic inference. ACM Trans. Inf. Syst. (TOIS) 13(1), 38–68 (1995)

    Article  MathSciNet  Google Scholar 

  8. Flake, G.W., Lawrence, S., Giles, C.L., Coetzee, F.M.: Self-organization and identification of web communities. Computer 35(3), 66–70 (2002)

    Article  Google Scholar 

  9. Subtil, P., Mouaddib, N., Foucaut, O.: A fuzzy information retrieval and management system and its applications. In: Proceedings of the 1996 ACM Symposium on Applied Computing, pp.537–541. ACM (1996)

    Google Scholar 

  10. Oussalah, M., Khan, S., Nefti, S.: Personalized information retrieval system in the framework of fuzzy logic. Expert Syst. Appl. 35(1), 423–433 (2008)

    Article  Google Scholar 

  11. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer Science & Business Media (2012)

    Google Scholar 

  12. Mooers, C.N.: A Mathematical Theory of Language Symbols in Retrieval. Zator (1958)

    Google Scholar 

  13. Kumar, C.A., Srinivas, S.: A note on the effect of term weighting on selecting intrinsic dimensionality of data. Cybern. Inf. Technol. 9(1), 5–12 (2009)

    Google Scholar 

  14. Kumar, C.A.: Fuzzy clustering-based formal concept analysis for association rules mining. Appl. Artif. Intell. 26(3), 274–301 (2012)

    Google Scholar 

  15. Priss, U.: Lattice-based information retrieval. Knowl. Organ. 27(3), 132–142 (2000)

    Google Scholar 

  16. Kollewe, W., Sander, C., Schmiede, R., Wille, R.: TOSCANA als Instrument der bibliothekarischenSacherschließung. Aufbau und ErschließungbegrifflicherDatenbanken, pp. 95–114. BIS-Verlag, Oldenburg (2000)

    Google Scholar 

  17. Carpineto, C., Romano, G.: Using concept lattices for text retrieval and mining. In: Formal Concept Analysis, pp. 161–179. Springer, Berlin (2005)

    Google Scholar 

  18. Aswani Kumar, C., Radvansky, M., Annapurna, J.: Analysis of a vector space model, latent semantic indexing and formal concept analysis for information retrieval. Cybern. Inf. Technol. 12(1), 34–48 (2012)

    Google Scholar 

  19. Muthukrishnan, A.K.: Information Retrieval Using Concept Lattices (M.S. dissertation, University of Cincinnati) (2006)

    Google Scholar 

  20. Kumar, C.A., Ishwarya, M. S., Loo, C.K.: Formal concept analysis approach to cognitive functionalities of bidirectional associative memory. Biol. Inspir. Cogn. Archit. 12, 20–33 (2015)

    Google Scholar 

  21. Krajci, S.: Cluster based efficient generation of fuzzy concepts. Neural Netw. World 13(5), 521–530 (2003)

    MathSciNet  Google Scholar 

  22. Butka, P., Pócsová, J., Pócs, J.: A proposal of the information retrieval system based on the generalized one-sided concept lattices. In: Applied Computational Intelligence in Engineering and Information Technology, pp. 59–70. Springer, Berlin, Heidelberg (2012)

    Google Scholar 

  23. Martin, T., Majidian, A.: Finding fuzzy concepts for creative knowledge discovery. Int. J. Intell. Syst. 28(1), 93–114 (2013)

    Article  Google Scholar 

  24. Kumar, C.A., Srinivas, S.: Concept lattice reduction using fuzzy K-Means clustering. Expert Syst. Appl. 37(3), 2696–2704 (2010)

    Article  Google Scholar 

  25. Aswani Kumar, C., Srinivas, S.: Mining associations in health care data using formal concept analysis and singular value decomposition. J. Biol. Syst. 18(04), 787–807 (2010)

    Article  MathSciNet  Google Scholar 

  26. Formica, A.: Semantic Web search based on rough sets and Fuzzy Formal Concept Analysis. Knowl. Based Syst. 26, 40–47 (2012)

    Article  Google Scholar 

  27. Quan, T.T., Hui, S.C., Cao, T.H.: A Fuzzy FCA-based approach to conceptual clustering for automatic generation of concept hierarchy on uncertainty data. In: CLA, pp. 1–12 (2004)

    Google Scholar 

  28. Letsche, T.A., Berry, M.W.: Large-scale information retrieval with latent semantic indexing. Inf. Sci. 100(1), 105–137 (1997)

    Article  Google Scholar 

  29. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval (vol. 463). ACM press, New York (1999)

    Google Scholar 

  30. Barbut, M., Monjardet, B.: Ordreet classification algèbre et combinatoirs. Hachette (1970)

    Google Scholar 

  31. Carpineto, C., Romano, G.: A lattice conceptual clustering system and its application to browsing retrieval. Mach. Learn. 24(2), 95–122 (1996)

    Google Scholar 

  32. Carpineto, C., Mizzaro, S., Romano, G., Snidero, M.: Mobile information retrieval with search results clustering: prototypes and evaluations. J. Am. Soc. Inform. Sci. Technol. 60(5), 877–895 (2009)

    Article  Google Scholar 

  33. Carpineto, C., Romano, G.: Galois: an order-theoretic approach to conceptual clustering. In: Proceedings of ICML, vol. 293, pp. 33–40 (1993)

    Google Scholar 

  34. Spoerri, A.: InfoCrystal: integrating exact and partial matching approaches through visualization. In: RIAO 94: recherched’informationassistée par ordinateur. Conférence, pp. 687–696 (1994)

    Google Scholar 

  35. Valverde-Albacete, F.J., Peláez-Moreno, C.: Systems versus methods: an analysis of the affordances of FOrmal concept analysis for information retrieval⋆. In: FCAIR 2012 Formal Concept Analysis Meets Information Retrieval Workshop co-located with the 35th European Conference on Information Retrieval (ECIR 2013), (p. 113). Moscow, Russia (2013)

    Google Scholar 

  36. Godin, R., Missaoui, R., April, A.: Experimental comparison of navigation in a Galois lattice with conventional information retrieval methods. Int. J. Man Mach. Stud. 38(5), 747–767 (1993)

    Article  Google Scholar 

  37. Alam, M., & Napoli, A.: Defining views with formal concept analysis for understanding SPARQL query results. In: Proceedings of the Eleventh International Conference on Concept Lattices and Their Applications (2014)

    Google Scholar 

  38. Singh, P.K., &Aswani Kumar, Ch.: Bipolar fuzzy graph representation of concept lattice. Inf. Sci. 288, 437–448 (2014)

    Google Scholar 

  39. Singh, P.K., Aswani Kumar, C., Li, J.: Knowledge representation using interval valued fuzzy formal concept lattice. Soft Comput. (2015)

    Google Scholar 

Download references

Acknowledgments

One of the Authors, Ch. A.K sincerely acknowledges the research grant under cognitive science research initiative schemeSR/CSRI/118/2014 of DST, Govt. of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cherukuri Aswani Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Aswani Kumar, C., Chandra Mouliswaran, S., Amriteya, P., Arun, S.R. (2015). Fuzzy Formal Concept Analysis Approach for Information Retrieval. In: Ravi, V., Panigrahi, B., Das, S., Suganthan, P. (eds) Proceedings of the Fifth International Conference on Fuzzy and Neuro Computing (FANCCO - 2015). Advances in Intelligent Systems and Computing, vol 415. Springer, Cham. https://doi.org/10.1007/978-3-319-27212-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27212-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27211-5

  • Online ISBN: 978-3-319-27212-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics