[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Introduction: Data Science and BigData Computing

  • Chapter
  • First Online:
Mathematical Problems in Data Science

Abstract

What is Data Science? Data contains science. It is much different from the angle of classical mathematics that uses mathematical models to fit the data. Today, we are supposed to find rules and properties in the data set, even among different data sets. In this chapter, we will explain data science and its relationship to BigData, cloud computing and data mining. We also discuss current research problems in data science and provide concerns relating to a baseline of the data science industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 87.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 109.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Abernethy, Y. Chen, J.W. Vaughan, Efficient market making via convex optimization, and a connection to online learning. ACM Trans. Econ. Comput. 1(2), Article 12 (2013)

    Google Scholar 

  2. L. Balzano, R. Nowak, A. Szlam, B. Recht, k-Subspaces with missing data. University of Wisconsin, Madison, Technical Report ECE-11-02, February 2011

    Google Scholar 

  3. R.E. Bryant, R.H. Katz, E.D. Lazowska, Big-Data computing: Creating revolutionary breakthroughs in commerce, science, and society (2008). Computing Research Consortium, at http://www.cra.org/ccc/resources/ccc-led-white-papers/. Accessed 20 September 2013

  4. E.J. Candes, T. Tao, The power of convex relaxation: near-optimal matrix completion. IEEE Trans. Inf. Theory 56, 2053–2080 (2010)

    Article  MathSciNet  Google Scholar 

  5. L.M. Chen, Digital and Discrete Geometry: Theory and Algorithms, Springer, 2014

    Book  MATH  Google Scholar 

  6. L. Chen, How to be a good programmer. ACM SigAct News, 42(2), 77–81 (2011)

    Article  Google Scholar 

  7. W.S. Cleveland, Data science: an action plan for expanding the technical areas of the field of statistics. Int. Stat. Rev./Revue Internationale de Statistique 69(1), 21–26 (2001)

    Google Scholar 

  8. J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters. Commun. ACM 51(1), 107–113 (2008)

    Article  Google Scholar 

  9. V. Dhar, Data science and prediction. Commun. ACM 56, 12–64 (2013)

    Article  Google Scholar 

  10. B. Eriksson, L. Balzano, R. Nowak, High rank matrix completion, in Proceedings of International Conference on Artificial Intelligence and Statistics (2012). http://jmlr.csail.mit.edu/proceedings/papers/v22/eriksson12/eriksson12.pdf

  11. Hadoop: Open source implementation of MapReduce. http://lucene.apache.org/hadoop/ (2014)

  12. J. Han, M. Kamber, Data Mining: Concepts and Techniques (Morgan Kaufmann, Los Altos, CA, 2001)

    MATH  Google Scholar 

  13. T. Hastie, R. Tibshirani, J. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. (Springer, New York, 2009)

    Book  MATH  Google Scholar 

  14. T. Hey, S. Tansley, K. Tolle, Jim Grey on eScience: a transformed scientific method, in The Fourth Paradigm: Data-Intensive Scientific Discovery. Redmond: Microsoft Research, ed. by T. Hey, S. Tansley, K. Tolle (2009), pp. xvii–xxxi, Microsoft Research

    Google Scholar 

  15. K. Kanatani, Motion segmentation by subspace separation and model selection, in Proceedings. Eighth IEEE International Conference on Computer Vision, 2001. ICCV 2001, vol. 2 (2001), pp. 586–591

    Google Scholar 

  16. R. Kennedy, B. Laura S.J. Wright, C.J. Taylor, Online algorithms for factorization-based structure from motion. ArXiv e-print 1309.6964 (2013). http://arxiv.org/abs/1309.6964. 2014 IEEE Winter Conference on Date of Conference on Applications of Computer Vision (WACV) 24–26, 37–44 (2014)

  17. R. Kitchin, Big Data, new epistemologies and paradigm shifts. Big Data Soc. 1(1), 1–12 (2014)

    Article  Google Scholar 

  18. T. Kuhn, The Structure of Scientific Revolutions (University of Chicago Press, Chicago, 1962)

    Google Scholar 

  19. J.-C. Pinoli, Mathematical Foundations of Image Processing and Analysis, vols. 1, 2 (Wiley, New York, 2014)

    Google Scholar 

  20. B. Recht, A simpler approach to matrix completion. J. Mach. Learn. Res. 12, 3413–3430 (2011). arXiv:0910.0651v2

    Google Scholar 

  21. A. Teran, Real-time multi-target tracking: a study on color-texture covariance matrices and descriptor/operator switching, University of Paris Sud, Paris XI, Ph.D. Thesis, 2013

    Google Scholar 

  22. R. Vidal, A tutorial on subspace clustering. Johns Hopkins Technical Report, 2010. http://www.cis.jhu.edu/~rvidal/publications/SPM-Tutorial-Final.pdf

  23. R. Vidal, R. Tron, R. Hartley, Multiframe motion segmentation with missing data using PowerFactorization and GPCA. Int. J. Comput. Vis. 79(1), 85–105 (2008)

    Article  Google Scholar 

  24. T. White, Hadoop: The Definitive Guide, 4th edn. (O’Reilly, Sebastopol, CA, 2015)

    Google Scholar 

  25. A. Yang, J. Wright, Y. Ma, S. Sastry, Unsupervised segmentation of natural images via lossy data compression. Comput. Vis. Image Underst. 110(2), 212–225 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li M. Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chen, L.M. (2015). Introduction: Data Science and BigData Computing. In: Mathematical Problems in Data Science. Springer, Cham. https://doi.org/10.1007/978-3-319-25127-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25127-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25125-7

  • Online ISBN: 978-3-319-25127-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics