Abstract
Rare category detecion (RCD) aims to discover rare categories in a massive unlabeled data set with the help of a labeling oracle. A challenging task in RCD is to discover rare categories which are concealed by numerous data examples from major categories. Only a few algorithms have been proposed for this issue, most of which are on quadratic or cubic time complexity. In this paper, we propose a novel tree-based algorithm known as RCD-Forest with \(O(\varphi n \log {(n/s)})\) time complexity and high query efficiency where n is the size of the unlabeled data set. Experimental results on both synthetic and real data sets verify the effectiveness and efficiency of our method.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Asuncion, A., Newman, D.: UCI Machine Learning Repository (2007)
Hao, H., Kevin, C., Yunjun, G., Qinming, H., Qing, L.: Rare category exploration. Expert Syst. Appl. 41(9), 4197–4210 (2014)
He, J., Carbonell, J.G.: Nearest-neighbor-based active learning for rare category detection. In: NIPS 2007, pp. 633–640 (2007)
He, J., Liu, Y., Lawrence, R.: Graph-based rare category detection. In: ICDE 2008, pp. 833–838 (2008)
Huang, H., He, Q., Chiew, K., Qian, F., Ma, L.: CLOVER: a faster prior-free approach to rare-category detection. Knowl. Inf. Syst. 35(3), 713–736 (2013)
Huang, H., He, Q., He, J., Ma, L.: RADAR: rare category detection via computation of boundary degree. In: Huang, J.Z., Srivastava, J., Cao, L. (eds.) PAKDD 2011, Part II. LNCS, vol. 6635, pp. 258–269. Springer, Heidelberg (2011)
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: ICDM 2008, pp. 413–422 (2008)
Liu, Z., Huang, H., He, Q., Chiew, K., Gao, Y.: Rare category exploration on linear time complexity. In: Renz, M., Shahabi, C., Zhou, X., Chemma, M.A. (eds.) DASFAA 2015. LNCS, vol. 9050, pp. 37–54. Springer, Heidelberg (2015)
Liu, Z., Huang, H., He, Q., Chiew, K., Ma, L.: Rare category detection on O(dN) time complexity. In: Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y., Tseng, V.S. (eds.) PAKDD 2014, Part II. LNCS, vol. 8444, pp. 498–509. Springer, Heidelberg (2014)
Ram, P., Gray, A.G.: Density estimation trees. In: KDD 2011, pp. 627–635 (2011)
Weng, H.: Zhejiang University (2015). https://github.com/HaiQW/MOOC
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Weng, H., Liu, Z., Chiew, K., He, Q. (2015). Rare Category Detection Forest. In: Zhang, S., Wirsing, M., Zhang, Z. (eds) Knowledge Science, Engineering and Management. KSEM 2015. Lecture Notes in Computer Science(), vol 9403. Springer, Cham. https://doi.org/10.1007/978-3-319-25159-2_55
Download citation
DOI: https://doi.org/10.1007/978-3-319-25159-2_55
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-25158-5
Online ISBN: 978-3-319-25159-2
eBook Packages: Computer ScienceComputer Science (R0)